| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783 |
- /******************************************************************************
- * @file csky_math.h
- * @brief Public header file for CSI DSP Library.
- * @version V1.0
- * @date 20. Dec 2016
- ******************************************************************************/
- /* ---------------------------------------------------------------------------
- * Copyright (C) 2016 CSKY Limited. All rights reserved.
- *
- * Redistribution and use of this software in source and binary forms,
- * with or without modification, are permitted provided that the following
- * conditions are met:
- * * Redistributions of source code must retain the above copyright notice,
- * this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright notice,
- * this list of conditions and the following disclaimer in the documentation
- * and/or other materials provided with the distribution.
- * * Neither the name of CSKY Ltd. nor the names of CSKY's contributors may
- * be used to endorse or promote products derived from this software without
- * specific prior written permission of CSKY Ltd.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
- * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
- * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
- * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
- * THE POSSIBILITY OF SUCH DAMAGE.
- * -------------------------------------------------------------------------- */
- /**
- * @defgroup groupMath Basic Math Functions
- */
- /**
- * @defgroup groupFastMath Fast Math Functions
- * This set of functions provides a fast approximation to sine, cosine, and square root.
- * As compared to most of the other functions in the CSI math library, the fast math functions
- * operate on individual values and not arrays.
- * There are separate functions for Q15, Q31, and floating-point data.
- *
- */
- /**
- * @defgroup groupCmplxMath Complex Math Functions
- * This set of functions operates on complex data vectors.
- * The data in the complex arrays is stored in an interleaved fashion
- * (real, imag, real, imag, ...).
- * In the API functions, the number of samples in a complex array refers
- * to the number of complex values; the array contains twice this number of
- * real values.
- */
- /**
- * @defgroup groupFilters Filtering Functions
- */
- /**
- * @defgroup groupMatrix Matrix Functions
- *
- * This set of functions provides basic matrix math operations.
- * The functions operate on matrix data structures. For example,
- * the type
- * definition for the floating-point matrix structure is shown
- * below:
- * <pre>
- * typedef struct
- * {
- * uint16_t numRows; // number of rows of the matrix.
- * uint16_t numCols; // number of columns of the matrix.
- * float32_t *pData; // points to the data of the matrix.
- * } csky_matrix_instance_f32;
- * </pre>
- * There are similar definitions for Q15 and Q31 data types.
- *
- * The structure specifies the size of the matrix and then points to
- * an array of data. The array is of size <code>numRows X numCols</code>
- * and the values are arranged in row order. That is, the
- * matrix element (i, j) is stored at:
- * <pre>
- * pData[i*numCols + j]
- * </pre>
- *
- * \par Init Functions
- * There is an associated initialization function for each type of matrix
- * data structure.
- * The initialization function sets the values of the internal structure fields.
- * Refer to the function <code>csky_mat_init_f32()</code>, <code>csky_mat_init_q31()</code>
- * and <code>csky_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
- *
- * \par
- * Use of the initialization function is optional. However, if initialization function is used
- * then the instance structure cannot be placed into a const data section.
- * To place the instance structure in a const data
- * section, manually initialize the data structure. For example:
- * <pre>
- * <code>csky_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
- * <code>csky_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
- * <code>csky_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
- * </pre>
- * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
- * specifies the number of columns, and <code>pData</code> points to the
- * data array.
- *
- * \par Size Checking
- * By default all of the matrix functions perform size checking on the input and
- * output matrices. For example, the matrix addition function verifies that the
- * two input matrices and the output matrix all have the same number of rows and
- * columns. If the size check fails the functions return:
- * <pre>
- * CSKY_MATH_SIZE_MISMATCH
- * </pre>
- * Otherwise the functions return
- * <pre>
- * CSKY_MATH_SUCCESS
- * </pre>
- * There is some overhead associated with this matrix size checking.
- * The matrix size checking is enabled via the \#define
- * <pre>
- * CSKY_MATH_MATRIX_CHECK
- * </pre>
- * within the library project settings. By default this macro is defined
- * and size checking is enabled. By changing the project settings and
- * undefining this macro size checking is eliminated and the functions
- * run a bit faster. With size checking disabled the functions always
- * return <code>CSKY_MATH_SUCCESS</code>.
- */
- /**
- * @defgroup groupTransforms Transform Functions
- */
- /**
- * @defgroup groupController Controller Functions
- */
- /**
- * @defgroup groupStats Statistics Functions
- */
- /**
- * @defgroup groupSupport Support Functions
- */
- /**
- * @defgroup groupInterpolation Interpolation Functions
- * These functions perform 1- and 2-dimensional interpolation of data.
- * Linear interpolation is used for 1-dimensional data and
- * bilinear interpolation is used for 2-dimensional data.
- */
- /**
- * @defgroup groupYunvoice Yunvoice Functions
- * These functions are designed for Yunvoice project, which are modified
- * according to the CEVA DSP functions. So, one can porting the software
- * from CEVA to CSKY straightforwardly.
- */
- /**
- * @defgroup groupExamples Examples
- */
- #ifndef _CSKY_MATH_H
- #define _CSKY_MATH_H
- #define __CSI_GENERIC /* disable NVIC and Systick functions */
- #include "csi_core.h"
- #include <float.h>
- #undef __CSI_GENERIC /* enable NVIC and Systick functions */
- #include "string.h"
- #include "math.h"
- #ifdef __cplusplus
- extern "C"
- {
- #endif
- /**
- * @brief Macros required for reciprocal calculation in Normalized LMS
- */
- #define DELTA_Q31 (0x100)
- #define DELTA_Q15 0x5
- #define INDEX_MASK 0x0000003F
- #ifndef PI
- #define PI 3.14159265358979f
- #endif
- /**
- * @brief Macros required for SINE and COSINE Fast math approximations
- */
- #define FAST_MATH_TABLE_SIZE 512
- #define FAST_MATH_Q31_SHIFT (32 - 10)
- #define FAST_MATH_Q15_SHIFT (16 - 10)
- #define CONTROLLER_Q31_SHIFT (32 - 9)
- #define TABLE_SIZE 256
- #define TABLE_SPACING_Q31 0x400000
- #define TABLE_SPACING_Q15 0x80
- /**
- * @brief Macros required for SINE and COSINE Controller functions
- */
- /* 1.31(q31) Fixed value of 2/360 */
- /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
- #define INPUT_SPACING 0xB60B61
- /**
- * @brief Macro for Unaligned Support
- */
- #ifndef UNALIGNED_SUPPORT_DISABLE
- #define ALIGN4
- #else
- #define ALIGN4 __attribute__((aligned(4)))
- #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
- /**
- * @brief Macro for log , pow and related fast functions.
- */
- #define ABS(x) (((x) > 0) ? (x) : (-x))
- #define max(x) (((y) > (x)) ? (y) : (x))
- #define min(x) (((y) < (x)) ? (y) : (x))
- #define CN 124217729.0
- #define HIGH_HALF 1
- #define LOW_HALF 0
- /* Exact addition of two single-length floating point numbers. */
- /* The macro produces a double-length number (z,zz) that satisfies */
- /* z+zz = x+y exactly. */
- #define EADD(x,y,z,zz) \
- z=(x)+(y); zz=(ABS(x)>ABS(y)) ? (((x)-(z))+(y)) : (((y)-(z))+(x));
- /* Exact multiplication of two single-length floating point numbers, */
- /*The macro produces a double-length number (z,zz) that */
- /* satisfies z+zz = x*y exactly. p,hx,tx,hy,ty are temporary */
- /* storage variables of type double. */
- # define EMULV(x,y,z,zz,p,hx,tx,hy,ty) \
- p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
- p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
- z=(x)*(y); zz=(((hx*hy-z)+hx*ty)+tx*hy)+tx*ty;
- /* Exact multiplication of two single-length floating point numbers. */
- /* The macro produces a nearly double-length number (z,zz) (see Dekker) */
- /* that satisfies z+zz = x*y exactly. p,hx,tx,hy,ty,q are temporary */
- /* storage variables of type double. */
- # define MUL12(x,y,z,zz,p,hx,tx,hy,ty,q) \
- p=CN*(x); hx=((x)-p)+p; tx=(x)-hx; \
- p=CN*(y); hy=((y)-p)+p; ty=(y)-hy; \
- p=hx*hy; q=hx*ty+tx*hy; z=p+q; zz=((p-z)+q)+tx*ty;
- /* Double-length addition, Dekker. The macro produces a double-length */
- /* number (z,zz) which satisfies approximately z+zz = x+xx + y+yy. */
- /* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
- /* are assumed to be double-length numbers. r,s are temporary */
- /* storage variables of type double. */
- #define ADD2(x,xx,y,yy,z,zz,r,s) \
- r=(x)+(y); s=(ABS(x)>ABS(y)) ? \
- (((((x)-r)+(y))+(yy))+(xx)) : \
- (((((y)-r)+(x))+(xx))+(yy)); \
- z=r+s; zz=(r-z)+s;
- /* Double-length subtraction, Dekker. The macro produces a double-length */
- /* number (z,zz) which satisfies approximately z+zz = x+xx - (y+yy). */
- /* An error bound: (abs(x+xx)+abs(y+yy))*4.94e-32. (x,xx), (y,yy) */
- /* are assumed to be double-length numbers. r,s are temporary */
- /* storage variables of type double. */
- #define SUB2(x,xx,y,yy,z,zz,r,s) \
- r=(x)-(y); s=(ABS(x)>ABS(y)) ? \
- (((((x)-r)-(y))-(yy))+(xx)) : \
- ((((x)-((y)+r))+(xx))-(yy)); \
- z=r+s; zz=(r-z)+s;
- /* Double-length multiplication, Dekker. The macro produces a double-length */
- /* number (z,zz) which satisfies approximately z+zz = (x+xx)*(y+yy). */
- /* An error bound: abs((x+xx)*(y+yy))*1.24e-31. (x,xx), (y,yy) */
- /* are assumed to be double-length numbers. p,hx,tx,hy,ty,q,c,cc are */
- /* temporary storage variables of type double. */
- #define MUL2(x,xx,y,yy,z,zz,p,hx,tx,hy,ty,q,c,cc) \
- MUL12(x,y,c,cc,p,hx,tx,hy,ty,q) \
- cc=((x)*(yy)+(xx)*(y))+cc; z=c+cc; zz=(c-z)+cc;
- __STATIC_INLINE int32_t __SSAT_31(int32_t x)
- {
- int32_t res = x;
- if (x > 0x3fffffff) {
- res = 0x3fffffff;
- } else if (x < -1073741824) {
- res = -1073741824;
- }
- return res;
- }
- __STATIC_INLINE int32_t __SSAT_16(int32_t x)
- {
- int32_t res = x;
- if (x > 0x7fff) {
- res = 0x7fff;
- } else if (x < -32768) {
- res = -32768;
- }
- return res;
- }
- __STATIC_INLINE int32_t __SSAT_8(int32_t x)
- {
- int32_t res = x;
- if (x > 0x7f) {
- res = 0x7f;
- } else if (x < -128) {
- res = -128;
- }
- return res;
- }
- #ifdef CSKY_SIMD
- /* SMMLAR */
- __STATIC_INLINE int32_t multAcc_32x32_keep32_R(int32_t a, int32_t x, int32_t y)
- {
- __ASM volatile("mula.s32.rhs %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y) : "0" (a), "1" (x), "2" (y));
- return a;
- }
- /* SMMLSR */
- __STATIC_INLINE int32_t multSub_32x32_keep32_R(int32_t a, int32_t x, int32_t y)
- {
- __ASM volatile("muls.s32.rhs %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
- return a;
- }
- /* SMMULR */
- __STATIC_INLINE int32_t mult_32x32_keep32_R(int32_t x, int32_t y)
- {
- int32_t a;
- __ASM volatile("mul.s32.rh %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y));
- return a;
- }
- /* SMMLA */
- __STATIC_INLINE int32_t multAcc_32x32_keep32(int32_t a, int32_t x, int32_t y)
- {
- __ASM volatile("mula.s32.hs %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
- return a;
- }
- /* SMMLS */
- __STATIC_INLINE int32_t multSub_32x32_keep32(int32_t a, int32_t x, int32_t y)
- {
- __ASM volatile("muls.s32.hs %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
- return a;
- }
- /* SMMUL */
- __STATIC_INLINE int32_t mult_32x32_keep32(int32_t x, int32_t y)
- {
- int32_t a;
- __ASM volatile("mul.s32.h %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
- return a;
- }
- __STATIC_INLINE int32_t multAcc_16x16_keep32(int32_t a, int16_t x, int16_t y)
- {
- __ASM volatile("mulall.s16 %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
- return a;
- }
- __STATIC_INLINE int64_t multAcc_16x16_keep64(int64_t a, int16_t x, int16_t y)
- {
- __ASM volatile("mulall.s16.e %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
- return a;
- }
- __STATIC_INLINE int64_t mult_32x32_keep64(int32_t x, int32_t y)
- {
- int64_t a;
- __ASM volatile("mul.s32 %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y));
- return a;
- }
- __STATIC_INLINE int64_t multAcc_32x32_keep64(int64_t a, int32_t x, int32_t y)
- {
- __ASM volatile("mula.s32 %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "0" (a), "1" (x), "2" (y));
- return a;
- }
- __STATIC_INLINE int32_t mult_32x32_dext_31(int32_t x, int32_t y)
- {
- int64_t tmp1;
- int32_t tmp2;
- __ASM volatile("mul.s32 %0, %1, %2\n\t"
- "dexti %3, %0, %R0, 31"
- :"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y));
- return tmp2;
- }
- __STATIC_INLINE int32_t mult_32x32_dext_30(int32_t x, int32_t y)
- {
- int64_t tmp1;
- int32_t tmp2;
- __ASM volatile("mul.s32 %0, %1, %2\n\t"
- "dexti %3, %0, %R0, 30"
- :"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y));
- return tmp2;
- }
- __STATIC_INLINE int32_t mult_32x32_dext_4(int32_t x, int32_t y)
- {
- int64_t tmp1;
- int32_t tmp2;
- __ASM volatile("mul.s32 %0, %1, %2\n\t"
- "dexti %3, %0, %R0, 4"
- :"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y));
- return tmp2;
- }
- __STATIC_INLINE int32_t mult_32x32_dext_33(int32_t x, int32_t y)
- {
- int64_t tmp1;
- int32_t tmp2;
- __ASM volatile("mul.s32 %0, %1, %2\n\t"
- "asri %3, %R0, 1"
- :"=r" (tmp1), "=r" (x), "=r" (y), "=r" (tmp2): "1" (x), "2" (y));
- return tmp2;
- }
- __STATIC_INLINE int32_t dext_31(int64_t x)
- {
- int32_t tmp1;
- __ASM volatile(
- "dexti %0, %1, %R1, 31"
- :"=r" (tmp1), "=r" (x) : "1" (x));
- return tmp1;
- }
- __STATIC_INLINE int32_t mult_l16xl16_keep32(int32_t x, int32_t y)
- {
- int32_t a;
- __ASM volatile("mulll.s16 %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y));
- return a;
- }
- __STATIC_INLINE int32_t mult_h16xl16_keep32(int32_t x, int32_t y)
- {
- int32_t a;
- __ASM volatile("mulhl.s16 %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y));
- return a;
- }
- __STATIC_INLINE int32_t mult_h16xh16_keep32(int32_t x, int32_t y)
- {
- int32_t a;
- __ASM volatile("mulhh.s16 %0, %1, %2\n\t"
- :"=r" (a), "=r" (x), "=r" (y): "1" (x), "2" (y));
- return a;
- }
- #endif
- /**
- * @brief Error status returned by some functions in the library.
- */
- typedef enum
- {
- CSKY_MATH_SUCCESS = 0, /**< No error */
- CSKY_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
- CSKY_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
- CSKY_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
- CSKY_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
- CSKY_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
- CSKY_MATH_TEST_FAILURE = -6 /**< Test Failed */
- } csky_status;
- /**
- * @brief 8-bit fractional data type in 1.7 format.
- */
- typedef int8_t q7_t;
- /**
- * @brief 16-bit fractional data type in 1.15 format.
- */
- typedef int16_t q15_t;
- /**
- * @brief 32-bit fractional data type in 1.31 format.
- */
- typedef int32_t q31_t;
- /**
- * @brief 64-bit fractional data type in 1.63 format.
- */
- typedef int64_t q63_t;
- /**
- * @brief 32-bit floating-point type definition.
- */
- typedef float float32_t;
- /**
- * @brief 64-bit floating-point type definition.
- */
- typedef double float64_t;
- /**
- * @brief 32-bit fractional complex data type in 1.31 format.
- */
- typedef struct
- {
- q31_t re;
- q31_t im;
- } cq31_t;
- /**
- * @brief 16-bit fractional complex data type in 1.15 format.
- */
- typedef struct
- {
- q15_t re;
- q15_t im;
- } cq15_t;
- /**
- * @brief definition to read/write two 16 bit values.
- */
- #define __SIMD32_TYPE int32_t
- #define CSI_UNUSED __attribute__((unused))
- #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
- #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
- #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
- #define __SIMD64(addr) (*(int64_t **) & (addr))
- #if defined (CSKY_MATH_NO_SIMD)
- /**
- * @brief definition to pack two 16 bit values.
- */
- #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
- (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
- #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
- (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
- #endif
- /**
- * @brief definition to pack four 8 bit values.
- */
- #ifndef CSKY_MATH_BIG_ENDIAN
- #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
- (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
- (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
- (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
- #else
- #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
- (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
- (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
- (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
- #endif
- /**
- * @brief Clips Q63 to Q31 values.
- */
- static __INLINE q31_t clip_q63_to_q31(
- q63_t x)
- {
- return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
- ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
- }
- /**
- * @brief Instance structure for the Q7 FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- } csky_fir_instance_q7;
- /**
- * @brief Instance structure for the Q15 FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- } csky_fir_instance_q15;
- /**
- * @brief Instance structure for the Q31 FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- } csky_fir_instance_q31;
- /**
- * @brief Instance structure for the floating-point FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- } csky_fir_instance_f32;
- void csky_fir_q7(
- const csky_fir_instance_q7 * S,
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_fir_init_q7(
- csky_fir_instance_q7 * S,
- uint16_t numTaps,
- q7_t * pCoeffs,
- q7_t * pState,
- uint32_t blockSize);
- void csky_fir_q15(
- const csky_fir_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_fir_fast_q15(
- const csky_fir_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- csky_status csky_fir_init_q15(
- csky_fir_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- uint32_t blockSize);
- void csky_fir_q31(
- const csky_fir_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_fir_fast_q31(
- const csky_fir_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_fir_init_q31(
- csky_fir_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- uint32_t blockSize);
- void csky_fir_f32(
- const csky_fir_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_fir_init_f32(
- csky_fir_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q15 Biquad cascade filter.
- */
- typedef struct
- {
- int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
- q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
- int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
- } csky_biquad_casd_df1_inst_q15;
- /**
- * @brief Instance structure for the Q31 Biquad cascade filter.
- */
- typedef struct
- {
- uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
- q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
- uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
- } csky_biquad_casd_df1_inst_q31;
- /**
- * @brief Instance structure for the Q31 Biquad cascade filter.
- */
- /**
- * @brief Instance structure for the floating-point Biquad cascade filter.
- */
- typedef struct
- {
- uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
- float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
- } csky_biquad_casd_df1_inst_f32;
- void csky_biquad_cascade_df1_q15(
- const csky_biquad_casd_df1_inst_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_biquad_cascade_df1_init_q15(
- csky_biquad_casd_df1_inst_q15 * S,
- uint8_t numStages,
- q15_t * pCoeffs,
- q15_t * pState,
- int8_t postShift);
- void csky_biquad_cascade_df1_fast_q15(
- const csky_biquad_casd_df1_inst_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_biquad_cascade_df1_q31(
- const csky_biquad_casd_df1_inst_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_biquad_cascade_df1_fast_q31(
- const csky_biquad_casd_df1_inst_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_biquad_cascade_df1_init_q31(
- csky_biquad_casd_df1_inst_q31 * S,
- uint8_t numStages,
- q31_t * pCoeffs,
- q31_t * pState,
- int8_t postShift);
- void csky_biquad_cascade_df1_f32(
- const csky_biquad_casd_df1_inst_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_biquad_cascade_df1_init_f32(
- csky_biquad_casd_df1_inst_f32 * S,
- uint8_t numStages,
- float32_t * pCoeffs,
- float32_t * pState);
- /**
- * @brief Instance structure for the floating-point matrix structure.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows of the matrix. */
- uint16_t numCols; /**< number of columns of the matrix. */
- float32_t *pData; /**< points to the data of the matrix. */
- } csky_matrix_instance_f32;
- /**
- * @brief Instance structure for the floating-point matrix structure.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows of the matrix. */
- uint16_t numCols; /**< number of columns of the matrix. */
- float64_t *pData; /**< points to the data of the matrix. */
- } csky_matrix_instance_f64;
- /**
- * @brief Instance structure for the Q15 matrix structure.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows of the matrix. */
- uint16_t numCols; /**< number of columns of the matrix. */
- q15_t *pData; /**< points to the data of the matrix. */
- } csky_matrix_instance_q15;
- /**
- * @brief Instance structure for the Q31 matrix structure.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows of the matrix. */
- uint16_t numCols; /**< number of columns of the matrix. */
- q31_t *pData; /**< points to the data of the matrix. */
- } csky_matrix_instance_q31;
- csky_status csky_mat_add_f32(
- const csky_matrix_instance_f32 * pSrcA,
- const csky_matrix_instance_f32 * pSrcB,
- csky_matrix_instance_f32 * pDst);
- csky_status csky_mat_add_q15(
- const csky_matrix_instance_q15 * pSrcA,
- const csky_matrix_instance_q15 * pSrcB,
- csky_matrix_instance_q15 * pDst);
- csky_status csky_mat_add_q31(
- const csky_matrix_instance_q31 * pSrcA,
- const csky_matrix_instance_q31 * pSrcB,
- csky_matrix_instance_q31 * pDst);
- csky_status csky_mat_cmplx_mult_f32(
- const csky_matrix_instance_f32 * pSrcA,
- const csky_matrix_instance_f32 * pSrcB,
- csky_matrix_instance_f32 * pDst);
- csky_status csky_mat_cmplx_mult_q15(
- const csky_matrix_instance_q15 * pSrcA,
- const csky_matrix_instance_q15 * pSrcB,
- csky_matrix_instance_q15 * pDst,
- q15_t * pScratch);
- csky_status csky_mat_cmplx_mult_q31(
- const csky_matrix_instance_q31 * pSrcA,
- const csky_matrix_instance_q31 * pSrcB,
- csky_matrix_instance_q31 * pDst);
- csky_status csky_mat_trans_f32(
- const csky_matrix_instance_f32 * pSrc,
- csky_matrix_instance_f32 * pDst);
- csky_status csky_mat_trans_q15(
- const csky_matrix_instance_q15 * pSrc,
- csky_matrix_instance_q15 * pDst);
- csky_status csky_mat_trans_q31(
- const csky_matrix_instance_q31 * pSrc,
- csky_matrix_instance_q31 * pDst);
- csky_status csky_mat_mult_f32(
- const csky_matrix_instance_f32 * pSrcA,
- const csky_matrix_instance_f32 * pSrcB,
- csky_matrix_instance_f32 * pDst);
- csky_status csky_mat_mult_q15(
- const csky_matrix_instance_q15 * pSrcA,
- const csky_matrix_instance_q15 * pSrcB,
- csky_matrix_instance_q15 * pDst,
- q15_t * pState);
- csky_status csky_mat_mult_fast_q15(
- const csky_matrix_instance_q15 * pSrcA,
- const csky_matrix_instance_q15 * pSrcB,
- csky_matrix_instance_q15 * pDst,
- q15_t * pState);
- csky_status csky_mat_mult_q31(
- const csky_matrix_instance_q31 * pSrcA,
- const csky_matrix_instance_q31 * pSrcB,
- csky_matrix_instance_q31 * pDst);
- csky_status csky_mat_mult_fast_q31(
- const csky_matrix_instance_q31 * pSrcA,
- const csky_matrix_instance_q31 * pSrcB,
- csky_matrix_instance_q31 * pDst);
- csky_status csky_mat_sub_f32(
- const csky_matrix_instance_f32 * pSrcA,
- const csky_matrix_instance_f32 * pSrcB,
- csky_matrix_instance_f32 * pDst);
- csky_status csky_mat_sub_q15(
- const csky_matrix_instance_q15 * pSrcA,
- const csky_matrix_instance_q15 * pSrcB,
- csky_matrix_instance_q15 * pDst);
- csky_status csky_mat_sub_q31(
- const csky_matrix_instance_q31 * pSrcA,
- const csky_matrix_instance_q31 * pSrcB,
- csky_matrix_instance_q31 * pDst);
- csky_status csky_mat_scale_f32(
- const csky_matrix_instance_f32 * pSrc,
- float32_t scale,
- csky_matrix_instance_f32 * pDst);
- csky_status csky_mat_scale_q15(
- const csky_matrix_instance_q15 * pSrc,
- q15_t scaleFract,
- int32_t shift,
- csky_matrix_instance_q15 * pDst);
- csky_status csky_mat_scale_q31(
- const csky_matrix_instance_q31 * pSrc,
- q31_t scaleFract,
- int32_t shift,
- csky_matrix_instance_q31 * pDst);
- void csky_mat_init_q31(
- csky_matrix_instance_q31 * S,
- uint16_t nRows,
- uint16_t nColumns,
- q31_t * pData);
- void csky_mat_init_q15(
- csky_matrix_instance_q15 * S,
- uint16_t nRows,
- uint16_t nColumns,
- q15_t * pData);
- void csky_mat_init_f32(
- csky_matrix_instance_f32 * S,
- uint16_t nRows,
- uint16_t nColumns,
- float32_t * pData);
- /**
- * @brief Instance structure for the Q15 PID Control.
- */
- typedef struct
- {
- q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
- q15_t A1;
- q15_t A2;
- q15_t state[3]; /**< The state array of length 3. */
- q15_t Kp; /**< The proportional gain. */
- q15_t Ki; /**< The integral gain. */
- q15_t Kd; /**< The derivative gain. */
- } csky_pid_instance_q15;
- /**
- * @brief Instance structure for the Q31 PID Control.
- */
- typedef struct
- {
- q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
- q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
- q31_t A2; /**< The derived gain, A2 = Kd . */
- q31_t state[3]; /**< The state array of length 3. */
- q31_t Kp; /**< The proportional gain. */
- q31_t Ki; /**< The integral gain. */
- q31_t Kd; /**< The derivative gain. */
- } csky_pid_instance_q31;
- /**
- * @brief Instance structure for the floating-point PID Control.
- */
- typedef struct
- {
- float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
- float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
- float32_t A2; /**< The derived gain, A2 = Kd . */
- float32_t state[3]; /**< The state array of length 3. */
- float32_t Kp; /**< The proportional gain. */
- float32_t Ki; /**< The integral gain. */
- float32_t Kd; /**< The derivative gain. */
- } csky_pid_instance_f32;
- void csky_pid_init_f32(
- csky_pid_instance_f32 * S,
- int32_t resetStateFlag);
- void csky_pid_reset_f32(
- csky_pid_instance_f32 * S);
- void csky_pid_init_q31(
- csky_pid_instance_q31 * S,
- int32_t resetStateFlag);
- void csky_pid_reset_q31(
- csky_pid_instance_q31 * S);
- void csky_pid_init_q15(
- csky_pid_instance_q15 * S,
- int32_t resetStateFlag);
- void csky_pid_reset_q15(
- csky_pid_instance_q15 * S);
- /**
- * @brief Instance structure for the floating-point Linear Interpolate function.
- */
- typedef struct
- {
- uint32_t nValues; /**< nValues */
- float32_t x1; /**< x1 */
- float32_t xSpacing; /**< xSpacing */
- float32_t *pYData; /**< pointer to the table of Y values */
- } csky_linear_interp_instance_f32;
- /**
- * @brief Instance structure for the floating-point bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- float32_t *pData; /**< points to the data table. */
- } csky_bilinear_interp_instance_f32;
- /**
- * @brief Instance structure for the Q31 bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- q31_t *pData; /**< points to the data table. */
- } csky_bilinear_interp_instance_q31;
- /**
- * @brief Instance structure for the Q15 bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- q15_t *pData; /**< points to the data table. */
- } csky_bilinear_interp_instance_q15;
- /**
- * @brief Instance structure for the Q15 bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- q7_t *pData; /**< points to the data table. */
- } csky_bilinear_interp_instance_q7;
- void csky_mult_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_mult_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_mult_rnd_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_mult_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_mult_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q15 CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- } csky_cfft_radix2_instance_q15;
- /**
- * @brief Instance structure for the Q15 CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q15_t *pTwiddle; /**< points to the twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- } csky_cfft_radix4_instance_q15;
- /**
- * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q31_t *pTwiddle; /**< points to the Twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- } csky_cfft_radix2_instance_q31;
- /**
- * @brief Instance structure for the Q31 CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q31_t *pTwiddle; /**< points to the twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- } csky_cfft_radix4_instance_q31;
- /**
- * @brief Instance structure for the floating-point CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- float32_t *pTwiddle; /**< points to the Twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- float32_t onebyfftLen; /**< value of 1/fftLen. */
- } csky_cfft_radix2_instance_f32;
- /**
- * @brief Instance structure for the floating-point CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- float32_t *pTwiddle; /**< points to the Twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- float32_t onebyfftLen; /**< value of 1/fftLen. */
- } csky_cfft_radix4_instance_f32;
- /**
- * @brief Instance structure for the fixed-point CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
- const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t bitRevLength; /**< bit reversal table length. */
- } csky_cfft_instance_q15;
- void csky_cfft_q15(
- const csky_cfft_instance_q15 * S,
- q15_t * p1,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
- /**
- * @brief Instance structure for the fixed-point CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
- const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t bitRevLength; /**< bit reversal table length. */
- } csky_cfft_instance_q31;
- void csky_cfft_q31(
- const csky_cfft_instance_q31 * S,
- q31_t * p1,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
- /**
- * @brief Instance structure for the floating-point CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
- const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t bitRevLength; /**< bit reversal table length. */
- } csky_cfft_instance_f32;
- void csky_cfft_f32(
- const csky_cfft_instance_f32 * S,
- float32_t * p1,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
- /**
- * @brief Instance structure for the Q15 RFFT/RIFFT function.
- */
- typedef struct
- {
- uint32_t fftLenReal; /**< length of the real FFT. */
- uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
- uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
- uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
- const csky_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
- } csky_rfft_instance_q15;
- csky_status csky_rfft_init_q15(
- csky_rfft_instance_q15 * S,
- uint32_t fftLenReal,
- uint32_t ifftFlagR,
- uint32_t bitReverseFlag);
- void csky_rfft_q15(
- const csky_rfft_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst);
- /**
- * @brief Instance structure for the Q31 RFFT/RIFFT function.
- */
- typedef struct
- {
- uint32_t fftLenReal; /**< length of the real FFT. */
- uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
- uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
- uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
- const csky_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
- } csky_rfft_instance_q31;
- csky_status csky_rfft_init_q31(
- csky_rfft_instance_q31 * S,
- uint32_t fftLenReal,
- uint32_t ifftFlagR,
- uint32_t bitReverseFlag);
- void csky_rfft_q31(
- const csky_rfft_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst);
- /**
- * @brief Instance structure for the floating-point RFFT/RIFFT function.
- */
- typedef struct
- {
- uint32_t fftLenReal; /**< length of the real FFT. */
- uint16_t fftLenBy2; /**< length of the complex FFT. */
- uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
- uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
- uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
- float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
- csky_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
- } csky_rfft_instance_f32;
- csky_status csky_rfft_init_f32(
- csky_rfft_instance_f32 * S,
- csky_cfft_radix4_instance_f32 * S_CFFT,
- uint32_t fftLenReal,
- uint32_t ifftFlagR,
- uint32_t bitReverseFlag);
- void csky_rfft_f32(
- const csky_rfft_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst);
- /**
- * @brief Instance structure for the floating-point RFFT/RIFFT function.
- */
- typedef struct
- {
- csky_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
- uint16_t fftLenRFFT; /**< length of the real sequence */
- float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
- } csky_rfft_fast_instance_f32 ;
- csky_status csky_rfft_fast_init_f32 (
- csky_rfft_fast_instance_f32 * S,
- uint16_t fftLen);
- void csky_rfft_fast_f32(
- csky_rfft_fast_instance_f32 * S,
- float32_t * p, float32_t * pOut,
- uint8_t ifftFlag);
- /**
- * @brief Instance structure for the floating-point DCT4/IDCT4 function.
- */
- typedef struct
- {
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- float32_t normalize; /**< normalizing factor. */
- float32_t *pTwiddle; /**< points to the twiddle factor table. */
- float32_t *pCosFactor; /**< points to the cosFactor table. */
- csky_rfft_fast_instance_f32 *pRfft; /**< points to the real FFT fast instance. */
- csky_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
- } csky_dct4_instance_f32;
- csky_status csky_dct4_init_f32(
- csky_dct4_instance_f32 * S,
- csky_rfft_fast_instance_f32 * S_RFFT,
- csky_cfft_radix4_instance_f32 * S_CFFT,
- uint16_t N,
- uint16_t Nby2,
- float32_t normalize);
- void csky_dct4_f32(
- const csky_dct4_instance_f32 * S,
- float32_t * pState,
- float32_t * pInlineBuffer);
- /**
- * @brief Instance structure for the Q31 DCT4/IDCT4 function.
- */
- typedef struct
- {
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- q31_t normalize; /**< normalizing factor. */
- q31_t *pTwiddle; /**< points to the twiddle factor table. */
- q31_t *pCosFactor; /**< points to the cosFactor table. */
- csky_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
- csky_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
- } csky_dct4_instance_q31;
- csky_status csky_dct4_init_q31(
- csky_dct4_instance_q31 * S,
- csky_rfft_instance_q31 * S_RFFT,
- csky_cfft_radix4_instance_q31 * S_CFFT,
- uint16_t N,
- uint16_t Nby2,
- q31_t normalize);
- void csky_dct4_q31(
- const csky_dct4_instance_q31 * S,
- q31_t * pState,
- q31_t * pInlineBuffer);
- /**
- * @brief Instance structure for the Q15 DCT4/IDCT4 function.
- */
- typedef struct
- {
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- q15_t normalize; /**< normalizing factor. */
- q15_t *pTwiddle; /**< points to the twiddle factor table. */
- q15_t *pCosFactor; /**< points to the cosFactor table. */
- csky_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
- csky_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
- } csky_dct4_instance_q15;
- csky_status csky_dct4_init_q15(
- csky_dct4_instance_q15 * S,
- csky_rfft_instance_q15 * S_RFFT,
- csky_cfft_radix4_instance_q15 * S_CFFT,
- uint16_t N,
- uint16_t Nby2,
- q15_t normalize);
- void csky_dct4_q15(
- const csky_dct4_instance_q15 * S,
- q15_t * pState,
- q15_t * pInlineBuffer);
- void csky_add_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_add_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_add_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_add_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_sub_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_sub_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_sub_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_sub_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_scale_f32(
- float32_t * pSrc,
- float32_t scale,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_scale_q7(
- q7_t * pSrc,
- q7_t scaleFract,
- int8_t shift,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_scale_q15(
- q15_t * pSrc,
- q15_t scaleFract,
- int8_t shift,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_scale_q31(
- q31_t * pSrc,
- q31_t scaleFract,
- int8_t shift,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_abs_q7(
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_abs_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_abs_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_abs_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_abs_max_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_abs_max_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_dot_prod_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- uint32_t blockSize,
- float32_t * result);
- void csky_dot_prod_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- uint32_t blockSize,
- q31_t * result);
- void csky_dot_prod_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- uint32_t blockSize,
- q63_t * result);
- void csky_dot_prod_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- uint32_t blockSize,
- q63_t * result);
- void csky_shift_q7(
- q7_t * pSrc,
- int8_t shiftBits,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_shift_q15(
- q15_t * pSrc,
- int8_t shiftBits,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_shift_q31(
- q31_t * pSrc,
- int8_t shiftBits,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_offset_f32(
- float32_t * pSrc,
- float32_t offset,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_offset_q7(
- q7_t * pSrc,
- q7_t offset,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_offset_q15(
- q15_t * pSrc,
- q15_t offset,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_offset_q31(
- q31_t * pSrc,
- q31_t offset,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_negate_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_negate_q7(
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_negate_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_negate_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_copy_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_copy_q7(
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_copy_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_copy_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_fill_f32(
- float32_t value,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_fill_q7(
- q7_t value,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_fill_q15(
- q15_t value,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_fill_q31(
- q31_t value,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_conv_f32(
- float32_t * pSrcA,
- uint32_t srcALen,
- float32_t * pSrcB,
- uint32_t srcBLen,
- float32_t * pDst);
- void csky_conv_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- q15_t * pScratch1,
- q15_t * pScratch2);
- void csky_conv_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
- void csky_conv_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
- void csky_conv_fast_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- q15_t * pScratch1,
- q15_t * pScratch2);
- void csky_conv_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
- void csky_conv_fast_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
- void csky_conv_opt_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst,
- q15_t * pScratch1,
- q15_t * pScratch2);
- void csky_conv_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst);
- csky_status csky_conv_partial_f32(
- float32_t * pSrcA,
- uint32_t srcALen,
- float32_t * pSrcB,
- uint32_t srcBLen,
- float32_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- csky_status csky_conv_partial_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints,
- q15_t * pScratch1,
- q15_t * pScratch2);
- csky_status csky_conv_partial_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- csky_status csky_conv_partial_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- csky_status csky_conv_partial_fast_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints,
- q15_t * pScratch1,
- q15_t * pScratch2);
- csky_status csky_conv_partial_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- csky_status csky_conv_partial_fast_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- csky_status csky_conv_partial_opt_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints,
- q15_t * pScratch1,
- q15_t * pScratch2);
- csky_status csky_conv_partial_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- /**
- * functions for the yunVoice functions.
- */
- q15_t csky_dsp_lib_vec_max_abs16(
- q15_t * A,
- uint32_t N);
- q31_t csky_dsp_lib_vec_max_abs32(
- q31_t * A,
- uint32_t N);
- void csky_dsp_lib_vec_abs16(
- q15_t * A,
- uint32_t N,
- q15_t * C);
- void csky_dsp_lib_vec_abs32(
- q31_t * A,
- uint32_t N,
- q31_t * C);
- void csky_dsp_lib_vec_add16(
- q15_t * A,
- q15_t * B,
- uint32_t N,
- q15_t * C);
- void csky_dsp_lib_vec_add32(
- q31_t * A,
- q31_t * B,
- uint32_t N,
- q31_t * C);
- void csky_dsp_lib_vec_cx_conj_q15(
- q15_t * A,
- uint32_t N,
- q15_t * B);
- void csky_dsp_lib_vec_cx_conj_q31(
- q31_t * A,
- uint32_t N,
- q31_t * C);
- q31_t csky_dsp_lib_vec_dot_q15(
- q15_t * A,
- q15_t * B,
- uint32_t N);
- q31_t csky_dsp_lib_vec_dot_q31(
- q31_t * A,
- q31_t * B,
- uint32_t N);
- void csky_dsp_lib_mat_cx_add16(
- cq15_t * A,
- cq15_t * B,
- uint32_t N,
- uint32_t M,
- cq15_t * C);
- void csky_dsp_lib_mat_cx_add32(
- cq31_t * A,
- cq31_t * B,
- uint32_t N,
- uint32_t M,
- cq31_t * C);
- void csky_dsp_lib_mat_cx_mul_q15(
- cq15_t * A,
- cq15_t * B,
- uint32_t N,
- uint32_t M,
- uint32_t L,
- cq15_t * C);
- void csky_dsp_lib_mat_cx_mul_q31(
- cq31_t * A,
- cq31_t * B,
- uint32_t N,
- uint32_t M,
- uint32_t L,
- cq31_t * C);
- void csky_dsp_lib_mat_cx_sub16(
- cq15_t * A,
- cq15_t * B,
- uint32_t N,
- uint32_t M,
- cq15_t * C);
- void csky_dsp_lib_mat_cx_sub32(
- cq31_t * A,
- cq31_t * B,
- uint32_t N,
- uint32_t M,
- cq31_t * C);
- void csky_dsp_lib_vec_mul_q15(
- q15_t * A,
- q15_t * B,
- uint32_t N,
- q15_t * C);
- void csky_dsp_lib_vec_mul_q31(
- q31_t * A,
- q31_t * B,
- uint32_t N,
- q31_t * C);
- q31_t csky_dsp_lib_pow_int32(
- q31_t arg_in_x,
- q15_t arg_exp_in_x,
- q31_t arg_in_y,
- q15_t arg_exp_in_y,
- q31_t *arg_exp_out);
- void csky_dsp_lib_vec_scale_q15(
- q15_t * A,
- q15_t scaleFract,
- int8_t shift,
- q15_t * B,
- uint32_t N);
- void csky_dsp_lib_vec_scale_q31(
- q31_t * A,
- q31_t scaleFract,
- int8_t shift,
- q31_t * B,
- uint32_t N);
- void csky_dsp_lib_vec_shf16(
- q15_t * A,
- int8_t shift_val,
- uint32_t N,
- q15_t * C);
- void csky_dsp_lib_vec_shf32(
- q31_t * A,
- q31_t shift_val,
- uint32_t N,
- q31_t * C);
- q15_t csky_dsp_lib_sqrt_int32(
- q31_t x,
- uint32_t rnd_flag);
- void csky_dsp_lib_vec_sub16(
- q15_t * A,
- q15_t * B,
- uint32_t N,
- q15_t * C);
- void csky_dsp_lib_vec_sub32(
- q31_t * A,
- q31_t * B,
- uint32_t N,
- q31_t * C);
- q63_t csky_dsp_lib_vec_sum16(
- q15_t * A,
- uint32_t N);
- q63_t csky_dsp_lib_vec_sum32(
- q31_t * A,
- uint32_t N);
- void csky_fft_lib_cx16_fft(
- q31_t log2_buf_len,
- q15_t * in_buf,
- q15_t * out_buf,
- const q15_t * twi_table,
- const uint16_t * bitrev_tbl,
- q15_t * temp_buf,
- q7_t * ScaleShift,
- q31_t br);
- void csky_fft_lib_cx32_fft(
- q31_t log2_buf_len,
- q31_t * in_buf,
- q31_t * out_buf,
- const q31_t * twi_table,
- const uint16_t * bitrev_tbl,
- q31_t * temp_buf,
- q31_t br);
- void csky_fft_lib_cx16_ifft(
- q31_t log2_buf_len,
- q15_t * in_buf,
- q15_t * out_buf,
- const q15_t * twi_table,
- const uint16_t * bitrev_tbl,
- q15_t * temp_buf,
- q7_t * ScaleShift,
- q31_t br);
- void csky_fft_lib_cx32_ifft(
- q31_t log2_buf_len,
- q31_t * in_buf,
- q31_t * out_buf,
- const q31_t * twi_table,
- const uint16_t * bitrev_tbl,
- q31_t * temp_buf,
- q31_t br);
- void csky_fft_lib_int16_fft(
- q31_t log2_buf_len,
- q15_t * in_buf,
- q15_t * out_buf,
- const q15_t * twi_table,
- const q15_t * last_stage_twi_table,
- const uint16_t * bitrev_tbl,
- q15_t * temp_buf,
- q7_t * ScaleShift,
- q31_t br);
- void csky_fft_lib_int32_fft(
- q31_t log2_buf_len,
- q31_t * in_buf,
- q31_t * out_buf,
- const q31_t * twi_table,
- const q31_t * last_stage_twi_table,
- const uint16_t * bitrev_tbl,
- q31_t * temp_buf,
- q31_t br);
- void csky_fft_lib_int16_ifft(
- q31_t log2_buf_len,
- q15_t * in_buf,
- q15_t * out_buf,
- const q15_t * twi_table,
- const q15_t * last_stage_twi_table,
- const uint16_t * bitrev_tbl,
- q15_t * temp_buf,
- q7_t * ScaleShift,
- q31_t br);
- void csky_fft_lib_int32_ifft(
- q31_t log2_buf_len,
- q31_t * in_buf,
- q31_t * out_buf,
- const q31_t * twi_table,
- const q31_t * last_stage_twi_table,
- const uint16_t * bitrev_tbl,
- q31_t * temp_buf,
- q31_t br);
- /**
- * @brief Instance structure for the Q15 FIR decimator.
- */
- typedef struct
- {
- uint8_t M; /**< decimation factor. */
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- } csky_fir_decimate_instance_q15;
- /**
- * @brief Instance structure for the Q31 FIR decimator.
- */
- typedef struct
- {
- uint8_t M; /**< decimation factor. */
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- } csky_fir_decimate_instance_q31;
- /**
- * @brief Instance structure for the floating-point FIR decimator.
- */
- typedef struct
- {
- uint8_t M; /**< decimation factor. */
- uint16_t numTaps; /**< number of coefficients in the filter. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- } csky_fir_decimate_instance_f32;
- void csky_fir_decimate_f32(
- const csky_fir_decimate_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- csky_status csky_fir_decimate_init_f32(
- csky_fir_decimate_instance_f32 * S,
- uint16_t numTaps,
- uint8_t M,
- float32_t * pCoeffs,
- float32_t * pState,
- uint32_t blockSize);
- void csky_fir_decimate_q15(
- const csky_fir_decimate_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_fir_decimate_fast_q15(
- const csky_fir_decimate_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- csky_status csky_fir_decimate_init_q15(
- csky_fir_decimate_instance_q15 * S,
- uint16_t numTaps,
- uint8_t M,
- q15_t * pCoeffs,
- q15_t * pState,
- uint32_t blockSize);
- void csky_fir_decimate_q31(
- const csky_fir_decimate_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_fir_decimate_fast_q31(
- csky_fir_decimate_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- csky_status csky_fir_decimate_init_q31(
- csky_fir_decimate_instance_q31 * S,
- uint16_t numTaps,
- uint8_t M,
- q31_t * pCoeffs,
- q31_t * pState,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q15 FIR interpolator.
- */
- typedef struct
- {
- uint8_t L; /**< upsample factor. */
- uint16_t phaseLength; /**< length of each polyphase filter component. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
- q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
- } csky_fir_interpolate_instance_q15;
- /**
- * @brief Instance structure for the Q31 FIR interpolator.
- */
- typedef struct
- {
- uint8_t L; /**< upsample factor. */
- uint16_t phaseLength; /**< length of each polyphase filter component. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
- q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
- } csky_fir_interpolate_instance_q31;
- /**
- * @brief Instance structure for the floating-point FIR interpolator.
- */
- typedef struct
- {
- uint8_t L; /**< upsample factor. */
- uint16_t phaseLength; /**< length of each polyphase filter component. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
- float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
- } csky_fir_interpolate_instance_f32;
- void csky_fir_interpolate_q15(
- const csky_fir_interpolate_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- csky_status csky_fir_interpolate_init_q15(
- csky_fir_interpolate_instance_q15 * S,
- uint8_t L,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- uint32_t blockSize);
- void csky_fir_interpolate_q31(
- const csky_fir_interpolate_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- csky_status csky_fir_interpolate_init_q31(
- csky_fir_interpolate_instance_q31 * S,
- uint8_t L,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- uint32_t blockSize);
- void csky_fir_interpolate_f32(
- const csky_fir_interpolate_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- csky_status csky_fir_interpolate_init_f32(
- csky_fir_interpolate_instance_f32 * S,
- uint8_t L,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the high precision Q31 Biquad cascade filter.
- */
- typedef struct
- {
- uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
- q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
- uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
- } csky_biquad_cas_df1_32x64_ins_q31;
- void csky_biquad_cas_df1_32x64_q31(
- const csky_biquad_cas_df1_32x64_ins_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_biquad_cas_df1_32x64_init_q31(
- csky_biquad_cas_df1_32x64_ins_q31 * S,
- uint8_t numStages,
- q31_t * pCoeffs,
- q63_t * pState,
- uint8_t postShift);
- /**
- * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
- */
- typedef struct
- {
- uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
- float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
- } csky_biquad_cascade_df2T_instance_f32;
- /**
- * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
- */
- typedef struct
- {
- uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
- float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
- } csky_biquad_cascade_stereo_df2T_instance_f32;
- /**
- * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
- */
- typedef struct
- {
- uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
- float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
- } csky_biquad_cascade_df2T_instance_f64;
- void csky_biquad_cascade_df2T_f32(
- const csky_biquad_cascade_df2T_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_biquad_cascade_stereo_df2T_f32(
- const csky_biquad_cascade_stereo_df2T_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_biquad_cascade_df2T_f64(
- const csky_biquad_cascade_df2T_instance_f64 * S,
- float64_t * pSrc,
- float64_t * pDst,
- uint32_t blockSize);
- void csky_biquad_cascade_df2T_init_f32(
- csky_biquad_cascade_df2T_instance_f32 * S,
- uint8_t numStages,
- float32_t * pCoeffs,
- float32_t * pState);
- void csky_biquad_cascade_stereo_df2T_init_f32(
- csky_biquad_cascade_stereo_df2T_instance_f32 * S,
- uint8_t numStages,
- float32_t * pCoeffs,
- float32_t * pState);
- void csky_biquad_cascade_df2T_init_f64(
- csky_biquad_cascade_df2T_instance_f64 * S,
- uint8_t numStages,
- float64_t * pCoeffs,
- float64_t * pState);
- /**
- * @brief Instance structure for the Q15 FIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of filter stages. */
- q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
- } csky_fir_lattice_instance_q15;
- /**
- * @brief Instance structure for the Q31 FIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of filter stages. */
- q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
- } csky_fir_lattice_instance_q31;
- /**
- * @brief Instance structure for the floating-point FIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of filter stages. */
- float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
- } csky_fir_lattice_instance_f32;
- void csky_fir_lattice_init_q15(
- csky_fir_lattice_instance_q15 * S,
- uint16_t numStages,
- q15_t * pCoeffs,
- q15_t * pState);
- void csky_fir_lattice_q15(
- const csky_fir_lattice_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_fir_lattice_init_q31(
- csky_fir_lattice_instance_q31 * S,
- uint16_t numStages,
- q31_t * pCoeffs,
- q31_t * pState);
- void csky_fir_lattice_q31(
- const csky_fir_lattice_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_fir_lattice_init_f32(
- csky_fir_lattice_instance_f32 * S,
- uint16_t numStages,
- float32_t * pCoeffs,
- float32_t * pState);
- void csky_fir_lattice_f32(
- const csky_fir_lattice_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q15 IIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of stages in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
- } csky_iir_lattice_instance_q15;
- /**
- * @brief Instance structure for the Q31 IIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of stages in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
- } csky_iir_lattice_instance_q31;
- /**
- * @brief Instance structure for the floating-point IIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of stages in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
- } csky_iir_lattice_instance_f32;
- void csky_iir_lattice_f32(
- const csky_iir_lattice_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_iir_lattice_init_f32(
- csky_iir_lattice_instance_f32 * S,
- uint16_t numStages,
- float32_t * pkCoeffs,
- float32_t * pvCoeffs,
- float32_t * pState,
- uint32_t blockSize);
- void csky_iir_lattice_q31(
- const csky_iir_lattice_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_iir_lattice_init_q31(
- csky_iir_lattice_instance_q31 * S,
- uint16_t numStages,
- q31_t * pkCoeffs,
- q31_t * pvCoeffs,
- q31_t * pState,
- uint32_t blockSize);
- void csky_iir_lattice_q15(
- const csky_iir_lattice_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_iir_lattice_init_q15(
- csky_iir_lattice_instance_q15 * S,
- uint16_t numStages,
- q15_t * pkCoeffs,
- q15_t * pvCoeffs,
- q15_t * pState,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the floating-point LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- float32_t mu; /**< step size that controls filter coefficient updates. */
- } csky_lms_instance_f32;
- void csky_lms_f32(
- const csky_lms_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pRef,
- float32_t * pOut,
- float32_t * pErr,
- uint32_t blockSize);
- void csky_lms_init_f32(
- csky_lms_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- float32_t mu,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q15 LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q15_t mu; /**< step size that controls filter coefficient updates. */
- uint32_t postShift; /**< bit shift applied to coefficients. */
- } csky_lms_instance_q15;
- void csky_lms_init_q15(
- csky_lms_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- q15_t mu,
- uint32_t blockSize,
- uint32_t postShift);
- void csky_lms_q15(
- const csky_lms_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pRef,
- q15_t * pOut,
- q15_t * pErr,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q31 LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q31_t mu; /**< step size that controls filter coefficient updates. */
- uint32_t postShift; /**< bit shift applied to coefficients. */
- } csky_lms_instance_q31;
- void csky_lms_q31(
- const csky_lms_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pRef,
- q31_t * pOut,
- q31_t * pErr,
- uint32_t blockSize);
- void csky_lms_init_q31(
- csky_lms_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- q31_t mu,
- uint32_t blockSize,
- uint32_t postShift);
- /**
- * @brief Instance structure for the floating-point normalized LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- float32_t mu; /**< step size that control filter coefficient updates. */
- float32_t energy; /**< saves previous frame energy. */
- float32_t x0; /**< saves previous input sample. */
- } csky_lms_norm_instance_f32;
- void csky_lms_norm_f32(
- csky_lms_norm_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pRef,
- float32_t * pOut,
- float32_t * pErr,
- uint32_t blockSize);
- void csky_lms_norm_init_f32(
- csky_lms_norm_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- float32_t mu,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q31 normalized LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q31_t mu; /**< step size that controls filter coefficient updates. */
- uint8_t postShift; /**< bit shift applied to coefficients. */
- q31_t *recipTable; /**< points to the reciprocal initial value table. */
- q31_t energy; /**< saves previous frame energy. */
- q31_t x0; /**< saves previous input sample. */
- } csky_lms_norm_instance_q31;
- void csky_lms_norm_q31(
- csky_lms_norm_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pRef,
- q31_t * pOut,
- q31_t * pErr,
- uint32_t blockSize);
- void csky_lms_norm_init_q31(
- csky_lms_norm_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- q31_t mu,
- uint32_t blockSize,
- uint8_t postShift);
- /**
- * @brief Instance structure for the Q15 normalized LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< Number of coefficients in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q15_t mu; /**< step size that controls filter coefficient updates. */
- uint8_t postShift; /**< bit shift applied to coefficients. */
- q15_t *recipTable; /**< Points to the reciprocal initial value table. */
- q15_t energy; /**< saves previous frame energy. */
- q15_t x0; /**< saves previous input sample. */
- } csky_lms_norm_instance_q15;
- void csky_lms_norm_q15(
- csky_lms_norm_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pRef,
- q15_t * pOut,
- q15_t * pErr,
- uint32_t blockSize);
- void csky_lms_norm_init_q15(
- csky_lms_norm_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- q15_t mu,
- uint32_t blockSize,
- uint8_t postShift);
- void csky_correlate_f32(
- float32_t * pSrcA,
- uint32_t srcALen,
- float32_t * pSrcB,
- uint32_t srcBLen,
- float32_t * pDst);
- void csky_correlate_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- q15_t * pScratch);
- void csky_correlate_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
- void csky_correlate_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
- void csky_correlate_fast_opt_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- q15_t * pScratch);
- void csky_correlate_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
- void csky_correlate_fast_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
- void csky_correlate_opt_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst,
- q15_t * pScratch1,
- q15_t * pScratch2);
- void csky_correlate_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst);
- /**
- * @brief Instance structure for the floating-point sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } csky_fir_sparse_instance_f32;
- /**
- * @brief Instance structure for the Q31 sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } csky_fir_sparse_instance_q31;
- /**
- * @brief Instance structure for the Q15 sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } csky_fir_sparse_instance_q15;
- /**
- * @brief Instance structure for the Q7 sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } csky_fir_sparse_instance_q7;
- void csky_fir_sparse_f32(
- csky_fir_sparse_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- float32_t * pScratchIn,
- uint32_t blockSize);
- void csky_fir_sparse_init_f32(
- csky_fir_sparse_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- int32_t * pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
- void csky_fir_sparse_q31(
- csky_fir_sparse_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- q31_t * pScratchIn,
- uint32_t blockSize);
- void csky_fir_sparse_init_q31(
- csky_fir_sparse_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- int32_t * pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
- void csky_fir_sparse_q15(
- csky_fir_sparse_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- q15_t * pScratchIn,
- q31_t * pScratchOut,
- uint32_t blockSize);
- void csky_fir_sparse_init_q15(
- csky_fir_sparse_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- int32_t * pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
- void csky_fir_sparse_q7(
- csky_fir_sparse_instance_q7 * S,
- q7_t * pSrc,
- q7_t * pDst,
- q7_t * pScratchIn,
- q31_t * pScratchOut,
- uint32_t blockSize);
- void csky_fir_sparse_init_q7(
- csky_fir_sparse_instance_q7 * S,
- uint16_t numTaps,
- q7_t * pCoeffs,
- q7_t * pState,
- int32_t * pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
- void csky_sin_cos_f32(
- float32_t theta,
- float32_t * pSinVal,
- float32_t * pCosVal);
- void csky_sin_cos_q31(
- q31_t theta,
- q31_t * pSinVal,
- q31_t * pCosVal);
- void csky_cmplx_conj_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_conj_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_conj_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_mag_squared_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_mag_squared_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_mag_squared_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t numSamples);
- /**
- * @ingroup groupController
- */
- /**
- * @defgroup PID PID Motor Control
- *
- * A Proportional Integral Derivative (PID) controller is a generic feedback control
- * loop mechanism widely used in industrial control systems.
- * A PID controller is the most commonly used type of feedback controller.
- *
- * This set of functions implements (PID) controllers
- * for Q15, Q31, and floating-point data types. The functions operate on a single sample
- * of data and each call to the function returns a single processed value.
- * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
- * is the input sample value. The functions return the output value.
- *
- * \par Algorithm:
- * <pre>
- * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
- * A0 = Kp + Ki + Kd
- * A1 = (-Kp ) - (2 * Kd )
- * A2 = Kd </pre>
- *
- * \par
- * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
- *
- * \par
- * \image html PID.gif "Proportional Integral Derivative Controller"
- *
- * \par
- * The PID controller calculates an "error" value as the difference between
- * the measured output and the reference input.
- * The controller attempts to minimize the error by adjusting the process control inputs.
- * The proportional value determines the reaction to the current error,
- * the integral value determines the reaction based on the sum of recent errors,
- * and the derivative value determines the reaction based on the rate at which the error has been changing.
- *
- * \par Instance Structure
- * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
- * A separate instance structure must be defined for each PID Controller.
- * There are separate instance structure declarations for each of the 3 supported data types.
- *
- * \par Reset Functions
- * There is also an associated reset function for each data type which clears the state array.
- *
- * \par Initialization Functions
- * There is also an associated initialization function for each data type.
- * The initialization function performs the following operations:
- * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
- * - Zeros out the values in the state buffer.
- *
- * \par
- * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
- *
- * \par Fixed-Point Behavior
- * Care must be taken when using the fixed-point versions of the PID Controller functions.
- * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
- /**
- * @addtogroup PID
- * @{
- */
- /**
- * @brief Process function for the floating-point PID Control.
- * @param[in,out] S is an instance of the floating-point PID Control structure
- * @param[in] in input sample to process
- * @return out processed output sample.
- */
- __STATIC_INLINE float32_t csky_pid_f32(
- csky_pid_instance_f32 * S,
- float32_t in)
- {
- float32_t out;
- /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
- out = (S->A0 * in) +
- (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
- /* Update state */
- S->state[1] = S->state[0];
- S->state[0] = in;
- S->state[2] = out;
- /* return to application */
- return (out);
- }
- /**
- * @}
- */ // end of PID group
- /**
- * @addtogroup PID
- * @{
- */
- /**
- * @brief Process function for the Q31 PID Control.
- * @param[in,out] S points to an instance of the Q31 PID Control structure
- * @param[in] in input sample to process
- * @return out processed output sample.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 64-bit accumulator.
- * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
- * Thus, if the accumulator result overflows it wraps around rather than clip.
- * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
- * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
- */
- __STATIC_INLINE q31_t csky_pid_q31(
- csky_pid_instance_q31 * S,
- q31_t in)
- {
- q63_t acc;
- q31_t out;
- #ifdef CSKY_SIMD
- /* acc = A0 * x[n] */
- acc = mult_32x32_keep64(S->A0, in);
- /* acc += A1 * x[n-1] */
- acc = multAcc_32x32_keep64(acc, S->A1, S->state[0]);
- /* acc += A2 * x[n-2] */
- acc = multAcc_32x32_keep64(acc, S->A2, S->state[1]);
- /* convert output to 1.31 format to add y[n-1] */
- out = dext_31(acc);
- #else
- /* acc = A0 * x[n] */
- acc = (q63_t) S->A0 * in;
- /* acc += A1 * x[n-1] */
- acc += (q63_t) S->A1 * S->state[0];
- /* acc += A2 * x[n-2] */
- acc += (q63_t) S->A2 * S->state[1];
- /* convert output to 1.31 format to add y[n-1] */
- out = (q31_t) (acc >> 31u);
- #endif
- /* out += y[n-1] */
- out += S->state[2];
- /* Update state */
- S->state[1] = S->state[0];
- S->state[0] = in;
- S->state[2] = out;
- /* return to application */
- return (out);
- }
- /**
- * @}
- */ // end of PID group
- /**
- * @addtogroup PID
- * @{
- */
- /**
- * @brief Process function for the Q15 PID Control.
- * @param[in,out] S points to an instance of the Q15 PID Control structure
- * @param[in] in input sample to process
- * @return out processed output sample.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using a 64-bit internal accumulator.
- * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
- * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
- * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
- * Lastly, the accumulator is saturated to yield a result in 1.15 format.
- */
- __STATIC_INLINE q15_t csky_pid_q15(
- csky_pid_instance_q15 * S,
- q15_t in)
- {
- q63_t acc;
- q15_t out;
- /* acc = A0 * x[n] */
- acc = ((q31_t) S->A0) * in;
- /* acc += A1 * x[n-1] + A2 * x[n-2] */
- acc += (q31_t) S->A1 * S->state[0];
- acc += (q31_t) S->A2 * S->state[1];
- /* acc += y[n-1] */
- acc += (q31_t) S->state[2] << 15;
- /* saturate the output */
- out = (q15_t) (__SSAT_16((acc >> 15)));
- /* Update state */
- S->state[1] = S->state[0];
- S->state[0] = in;
- S->state[2] = out;
- /* return to application */
- return (out);
- }
- /**
- * @}
- */ // end of PID group
- csky_status csky_mat_inverse_f32(
- const csky_matrix_instance_f32 * src,
- csky_matrix_instance_f32 * dst);
- csky_status csky_mat_inverse_f64(
- const csky_matrix_instance_f64 * src,
- csky_matrix_instance_f64 * dst);
- /**
- * @ingroup groupController
- */
- /**
- * @defgroup clarke Vector Clarke Transform
- * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
- * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
- * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
- * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
- * \image html clarke.gif Stator current space vector and its components in (a,b).
- * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
- * can be calculated using only <code>Ia</code> and <code>Ib</code>.
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html clarkeFormula.gif
- * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
- * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Clarke transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
- /**
- * @addtogroup clarke
- * @{
- */
- /**
- *
- * @brief Floating-point Clarke transform
- * @param[in] Ia input three-phase coordinate a
- * @param[in] Ib input three-phase coordinate b
- * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
- */
- __STATIC_INLINE void csky_clarke_f32(
- float32_t Ia,
- float32_t Ib,
- float32_t * pIalpha,
- float32_t * pIbeta)
- {
- /* Calculate pIalpha using the equation, pIalpha = Ia */
- *pIalpha = Ia;
- /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
- *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
- }
- /**
- * @}
- */ // end of clarke group
- /**
- * @addtogroup clarke
- * @{
- */
- /**
- * @brief Clarke transform for Q31 version
- * @param[in] Ia input three-phase coordinate a
- * @param[in] Ib input three-phase coordinate b
- * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the addition, hence there is no risk of overflow.
- */
- __STATIC_INLINE void csky_clarke_q31(
- q31_t Ia,
- q31_t Ib,
- q31_t * pIalpha,
- q31_t * pIbeta)
- {
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
- /* Calculating pIalpha from Ia by equation pIalpha = Ia */
- *pIalpha = Ia;
- #ifdef CSKY_SIMD
- /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
- product1 = mult_32x32_dext_30(Ia, 0x24F34E8B);
- /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
- product2 = mult_32x32_dext_30(Ib, 0x49E69D16);
- #else
- /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
- product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
- /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
- product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
- #endif
- /* pIbeta is calculated by adding the intermediate products */
- *pIbeta = __QADD(product1, product2);
- }
- /**
- * @}
- */ // end of clarke group
- void csky_q7_to_q31(
- q7_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @ingroup groupController
- */
- /**
- * @defgroup inv_clarke Vector Inverse Clarke Transform
- * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html clarkeInvFormula.gif
- * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
- * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Clarke transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
- /**
- * @addtogroup inv_clarke
- * @{
- */
- /**
- * @brief Floating-point Inverse Clarke transform
- * @param[in] Ialpha input two-phase orthogonal vector axis alpha
- * @param[in] Ibeta input two-phase orthogonal vector axis beta
- * @param[out] pIa points to output three-phase coordinate <code>a</code>
- * @param[out] pIb points to output three-phase coordinate <code>b</code>
- */
- __STATIC_INLINE void csky_inv_clarke_f32(
- float32_t Ialpha,
- float32_t Ibeta,
- float32_t * pIa,
- float32_t * pIb)
- {
- /* Calculating pIa from Ialpha by equation pIa = Ialpha */
- *pIa = Ialpha;
- /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
- *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
- }
- /**
- * @}
- */ // end of inv_clarke group
- /**
- * @addtogroup inv_clarke
- * @{
- */
- /**
- * @brief Inverse Clarke transform for Q31 version
- * @param[in] Ialpha input two-phase orthogonal vector axis alpha
- * @param[in] Ibeta input two-phase orthogonal vector axis beta
- * @param[out] pIa points to output three-phase coordinate <code>a</code>
- * @param[out] pIb points to output three-phase coordinate <code>b</code>
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the subtraction, hence there is no risk of overflow.
- */
- __STATIC_INLINE void csky_inv_clarke_q31(
- q31_t Ialpha,
- q31_t Ibeta,
- q31_t * pIa,
- q31_t * pIb)
- {
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
- /* Calculating pIa from Ialpha by equation pIa = Ialpha */
- *pIa = Ialpha;
- #ifdef CSKY_SIMD
- /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
- product1 = mult_32x32_dext_31(Ialpha, 0x40000000);
- /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
- product2 = mult_32x32_dext_31(Ibeta, 0x6ED9EBA1);
- #else
- /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
- product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
- /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
- product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
- #endif
- /* pIb is calculated by subtracting the products */
- *pIb = __QSUB(product2, product1);
- }
- /**
- * @}
- */ // end of inv_clarke group
- void csky_q7_to_q15(
- q7_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @ingroup groupController
- */
- /**
- * @defgroup park Vector Park Transform
- *
- * Forward Park transform converts the input two-coordinate vector to flux and torque components.
- * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
- * from the stationary to the moving reference frame and control the spatial relationship between
- * the stator vector current and rotor flux vector.
- * If we consider the d axis aligned with the rotor flux, the diagram below shows the
- * current vector and the relationship from the two reference frames:
- * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html parkFormula.gif
- * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
- * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
- * cosine and sine values of theta (rotor flux position).
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Park transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
- /**
- * @addtogroup park
- * @{
- */
- /**
- * @brief Floating-point Park transform
- * @param[in] Ialpha input two-phase vector coordinate alpha
- * @param[in] Ibeta input two-phase vector coordinate beta
- * @param[out] pId points to output rotor reference frame d
- * @param[out] pIq points to output rotor reference frame q
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- *
- * The function implements the forward Park transform.
- *
- */
- __STATIC_INLINE void csky_park_f32(
- float32_t Ialpha,
- float32_t Ibeta,
- float32_t * pId,
- float32_t * pIq,
- float32_t sinVal,
- float32_t cosVal)
- {
- /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
- *pId = Ialpha * cosVal + Ibeta * sinVal;
- /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
- *pIq = -Ialpha * sinVal + Ibeta * cosVal;
- }
- /**
- * @}
- */ // end of park group
- /**
- * @addtogroup park
- * @{
- */
- /**
- * @brief Park transform for Q31 version
- * @param[in] Ialpha input two-phase vector coordinate alpha
- * @param[in] Ibeta input two-phase vector coordinate beta
- * @param[out] pId points to output rotor reference frame d
- * @param[out] pIq points to output rotor reference frame q
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the addition and subtraction, hence there is no risk of overflow.
- */
- __STATIC_INLINE void csky_park_q31(
- q31_t Ialpha,
- q31_t Ibeta,
- q31_t * pId,
- q31_t * pIq,
- q31_t sinVal,
- q31_t cosVal)
- {
- #ifdef CSKY_SIMD
- __ASM volatile(
- "rmul.s32.h t0, %0, %3\n\t"
- "rmul.s32.h t1, %1, %2\n\t"
- "add.s32.s t0, t0, t1\n\t"
- "st.w t0, (%4, 0x0)\n\t"
- "rmul.s32.h t0, %0, %2\n\t"
- "rmul.s32.h t1, %1, %3\n\t"
- "sub.s32.s t1, t1, t0\n\t"
- "st.w t1, (%5, 0x0)\n\t"
- ::"r"(Ialpha),"r"(Ibeta),"r"(sinVal),"r"(cosVal),"r"(pId),"r"(pIq)
- :"t0","t1", "memory");
- #else
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
- q31_t product3, product4; /* Temporary variables used to store intermediate results */
- /* Intermediate product is calculated by (Ialpha * cosVal) */
- product1 = clip_q63_to_q31 (((q63_t) (Ialpha) * (cosVal)) >> 31);
- /* Intermediate product is calculated by (Ibeta * sinVal) */
- product2 = clip_q63_to_q31 (((q63_t) (Ibeta) * (sinVal)) >> 31);
- /* Intermediate product is calculated by (Ialpha * sinVal) */
- product3 = clip_q63_to_q31 (((q63_t) (Ialpha) * (sinVal)) >> 31);
- /* Intermediate product is calculated by (Ibeta * cosVal) */
- product4 = clip_q63_to_q31 (((q63_t) (Ibeta) * (cosVal)) >> 31);
- /* Calculate pId by adding the two intermediate products 1 and 2 */
- *pId = __QADD(product1, product2);
- /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
- *pIq = __QSUB(product4, product3);
- #endif
- }
- /**
- * @}
- */ // end of park group
- void csky_q7_to_float(
- q7_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @ingroup groupController
- */
- /**
- * @defgroup inv_park Vector Inverse Park transform
- * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html parkInvFormula.gif
- * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
- * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
- * cosine and sine values of theta (rotor flux position).
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Park transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
- /**
- * @addtogroup inv_park
- * @{
- */
- /**
- * @brief Floating-point Inverse Park transform
- * @param[in] Id input coordinate of rotor reference frame d
- * @param[in] Iq input coordinate of rotor reference frame q
- * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- */
- __STATIC_INLINE void csky_inv_park_f32(
- float32_t Id,
- float32_t Iq,
- float32_t * pIalpha,
- float32_t * pIbeta,
- float32_t sinVal,
- float32_t cosVal)
- {
- /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
- *pIalpha = Id * cosVal - Iq * sinVal;
- /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
- *pIbeta = Id * sinVal + Iq * cosVal;
- }
- /**
- * @}
- */ // end of inv_park group
- /**
- * @addtogroup inv_park
- * @{
- */
- /**
- * @brief Inverse Park transform for Q31 version
- * @param[in] Id input coordinate of rotor reference frame d
- * @param[in] Iq input coordinate of rotor reference frame q
- * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] pIbeta points to output two-phase orthogonal vector axis beta
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the addition, hence there is no risk of overflow.
- */
- __STATIC_INLINE void csky_inv_park_q31(
- q31_t Id,
- q31_t Iq,
- q31_t * pIalpha,
- q31_t * pIbeta,
- q31_t sinVal,
- q31_t cosVal)
- {
- #ifdef CSKY_SIMD
- __ASM volatile(
- "rmul.s32.h t0, %0, %3\n\t"
- "rmul.s32.h t1, %1, %2\n\t"
- "sub.s32.s t0, t0, t1\n\t"
- "st.w t0, (%4, 0x0)\n\t"
- "rmul.s32.h t0, %0, %2\n\t"
- "rmul.s32.h t1, %1, %3\n\t"
- "add.s32.s t0, t0, t1\n\t"
- "st.w t0, (%5, 0x0)\n\t"
- ::"r"(Id),"r"(Iq),"r"(sinVal),"r"(cosVal),"r"(pIalpha),"r"(pIbeta)
- :"t0","t1", "memory");
- #else
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
- q31_t product3, product4; /* Temporary variables used to store intermediate results */
- /* Intermediate product is calculated by (Id * cosVal) */
- product1 = clip_q63_to_q31 (((q63_t) (Id) * (cosVal)) >> 31);
- /* Intermediate product is calculated by (Iq * sinVal) */
- product2 = clip_q63_to_q31 (((q63_t) (Iq) * (sinVal)) >> 31);
- /* Intermediate product is calculated by (Id * sinVal) */
- product3 = clip_q63_to_q31 (((q63_t) (Id) * (sinVal)) >> 31);
- /* Intermediate product is calculated by (Iq * cosVal) */
- product4 = clip_q63_to_q31 (((q63_t) (Iq) * (cosVal)) >> 31);
- /* Calculate pIalpha by using the two intermediate products 1 and 2 */
- *pIalpha = __QSUB(product1, product2);
- /* Calculate pIbeta by using the two intermediate products 3 and 4 */
- *pIbeta = __QADD(product4, product3);
- #endif
- }
- /**
- * @}
- */ // end of inv_park group
- void csky_q31_to_float(
- q31_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @ingroup groupInterpolation
- */
- /**
- * @defgroup LinearInterpolate Linear Interpolation
- *
- * Linear interpolation is a method of curve fitting using linear polynomials.
- * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
- *
- * \par
- * \image html LinearInterp.gif "Linear interpolation"
- *
- * \par
- * A Linear Interpolate function calculates an output value(y), for the input(x)
- * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
- *
- * \par Algorithm:
- * <pre>
- * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
- * where x0, x1 are nearest values of input x
- * y0, y1 are nearest values to output y
- * </pre>
- *
- * \par
- * This set of functions implements Linear interpolation process
- * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
- * sample of data and each call to the function returns a single processed value.
- * <code>S</code> points to an instance of the Linear Interpolate function data structure.
- * <code>x</code> is the input sample value. The functions returns the output value.
- *
- * \par
- * if x is outside of the table boundary, Linear interpolation returns first value of the table
- * if x is below input range and returns last value of table if x is above range.
- */
- /**
- * @addtogroup LinearInterpolate
- * @{
- */
- /**
- * @brief Process function for the floating-point Linear Interpolation Function.
- * @param[in,out] S is an instance of the floating-point Linear Interpolation structure
- * @param[in] x input sample to process
- * @return y processed output sample.
- *
- */
- __STATIC_INLINE float32_t csky_linear_interp_f32(
- csky_linear_interp_instance_f32 * S,
- float32_t x)
- {
- float32_t y;
- float32_t x0, x1; /* Nearest input values */
- float32_t y0, y1; /* Nearest output values */
- float32_t xSpacing = S->xSpacing; /* spacing between input values */
- int32_t i; /* Index variable */
- float32_t *pYData = S->pYData; /* pointer to output table */
- /* Calculation of index */
- i = (int32_t) ((x - S->x1) / xSpacing);
- if(i < 0)
- {
- /* Iniatilize output for below specified range as least output value of table */
- y = pYData[0];
- }
- else if((uint32_t)i >= S->nValues)
- {
- /* Iniatilize output for above specified range as last output value of table */
- y = pYData[S->nValues - 1];
- }
- else
- {
- /* Calculation of nearest input values */
- x0 = S->x1 + i * xSpacing;
- x1 = S->x1 + (i + 1) * xSpacing;
- /* Read of nearest output values */
- y0 = pYData[i];
- y1 = pYData[i + 1];
- /* Calculation of output */
- y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
- }
- /* returns output value */
- return (y);
- }
- /**
- * @}
- */ // end of LinearInterpolate group
- /**
- * @addtogroup LinearInterpolate
- * @{
- */
- /**
- * @brief Process function for the Q31 Linear Interpolation Function.
- * @param[in] pYData pointer to Q31 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
- * @return y processed output sample.
- *
- * \par
- * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
- * This function can support maximum of table size 2^12.
- *
- */
- __STATIC_INLINE q31_t csky_linear_interp_q31(
- q31_t * pYData,
- q31_t x,
- uint32_t nValues)
- {
- q31_t y; /* output */
- q31_t y0, y1; /* Nearest output values */
- q31_t fract; /* fractional part */
- int32_t index; /* Index to read nearest output values */
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- index = ((x & (q31_t)0xFFF00000) >> 20);
- if(index >= (int32_t)(nValues - 1))
- {
- return (pYData[nValues - 1]);
- }
- else if(index < 0)
- {
- return (pYData[0]);
- }
- else
- {
- /* 20 bits for the fractional part */
- /* shift left by 11 to keep fract in 1.31 format */
- fract = (x & 0x000FFFFF) << 11;
- /* Read two nearest output values from the index in 1.31(q31) format */
- y0 = pYData[index];
- y1 = pYData[index + 1];
- #ifdef CSKY_SIMD
- /* Calculation of y0 * (1-fract) and y is in 2.30 format */
- y = mult_32x32_keep32(y0, (0x7FFFFFFF - fract));
- /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
- y = multAcc_32x32_keep32(y, y1, fract);
- #else
- /* Calculation of y0 * (1-fract) and y is in 2.30 format */
- y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
- /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
- y += ((q31_t) (((q63_t) y1 * fract) >> 32));
- #endif
- /* Convert y to 1.31 format */
- return (y << 1u);
- }
- }
- /**
- * @}
- */ // end of LinearInterpolate group
- /**
- * @addtogroup LinearInterpolate
- * @{
- */
- /**
- *
- * @brief Process function for the Q15 Linear Interpolation Function.
- * @param[in] pYData pointer to Q15 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
- * @return y processed output sample.
- *
- * \par
- * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
- * This function can support maximum of table size 2^12.
- *
- */
- __STATIC_INLINE q15_t csky_linear_interp_q15(
- q15_t * pYData,
- q31_t x,
- uint32_t nValues)
- {
- q63_t y; /* output */
- q15_t y0, y1; /* Nearest output values */
- q31_t fract; /* fractional part */
- int32_t index; /* Index to read nearest output values */
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- index = ((x & (int32_t)0xFFF00000) >> 20);
- if(index >= (int32_t)(nValues - 1))
- {
- return (pYData[nValues - 1]);
- }
- else if(index < 0)
- {
- return (pYData[0]);
- }
- else
- {
- /* 20 bits for the fractional part */
- /* fract is in 12.20 format */
- fract = (x & 0x000FFFFF);
- /* Read two nearest output values from the index */
- y0 = pYData[index];
- y1 = pYData[index + 1];
- #ifdef CSKY_SIMD
- /* Calculation of y0 * (1-fract) and y is in 13.35 format */
- y = mult_32x32_keep64(y0, (0xFFFFF - fract));
- /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
- y = multAcc_32x32_keep64(y, y1, (fract));
- #else
- /* Calculation of y0 * (1-fract) and y is in 13.35 format */
- y = ((q63_t) y0 * (0xFFFFF - fract));
- /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
- y += ((q63_t) y1 * (fract));
- #endif
- /* convert y to 1.15 format */
- return (q15_t) (y >> 20);
- }
- }
- /**
- * @}
- */ // end of LinearInterpolate group
- /**
- * @addtogroup LinearInterpolate
- * @{
- */
- /**
- *
- * @brief Process function for the Q7 Linear Interpolation Function.
- * @param[in] pYData pointer to Q7 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
- * @return y processed output sample.
- *
- * \par
- * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
- * This function can support maximum of table size 2^12.
- */
- __STATIC_INLINE q7_t csky_linear_interp_q7(
- q7_t * pYData,
- q31_t x,
- uint32_t nValues)
- {
- q31_t y; /* output */
- q7_t y0, y1; /* Nearest output values */
- q31_t fract; /* fractional part */
- uint32_t index; /* Index to read nearest output values */
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- if (x < 0)
- {
- return (pYData[0]);
- }
- index = (x >> 20) & 0xfff;
- if(index >= (nValues - 1))
- {
- return (pYData[nValues - 1]);
- }
- else
- {
- /* 20 bits for the fractional part */
- /* fract is in 12.20 format */
- fract = (x & 0x000FFFFF);
- /* Read two nearest output values from the index and are in 1.7(q7) format */
- y0 = pYData[index];
- y1 = pYData[index + 1];
- /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
- y = ((y0 * (0xFFFFF - fract)));
- /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
- y += (y1 * fract);
- /* convert y to 1.7(q7) format */
- return (q7_t) (y >> 20);
- }
- }
- /**
- * @}
- */ // end of LinearInterpolate group
- float32_t csky_sin_f32(
- float32_t x);
- q31_t csky_sin_q31(
- q31_t x);
- q15_t csky_sin_q15(
- q15_t x);
- float32_t csky_cos_f32(
- float32_t x);
- q31_t csky_cos_q31(
- q31_t x);
- q15_t csky_cos_q15(
- q15_t x);
- csky_status csky_sqrt_f32(
- float32_t in,
- float32_t * pOut);
- csky_status csky_sqrt_q31(
- q31_t in,
- q31_t * pOut);
- csky_status csky_sqrt_q15(
- q15_t in,
- q15_t * pOut);
- /*double format*/
- typedef union _myNumber
- {
- q31_t i[2];
- float64_t x;
- }mynumber;
- /* the coefficient for log2 table looh up*/
- typedef union
- {
- q31_t i[5800];
- float64_t x[2900];
- }log2_cof1;
- typedef union
- {
- q31_t i[4350];
- float64_t x[2175];
- }log2_cof2;
- /* the coefficient for exp table looh up*/
- typedef union
- {
- q31_t i[1424];
- float64_t x[712];
- }exp_cof1;
- typedef union
- {
- q31_t i[2048];
- float64_t x[1024];
- }exp_cof2;
- union ieee754_double
- {
- float64_t d;
- struct
- {
- unsigned int mantissa1:32;
- unsigned int mantissa0:20;
- unsigned int exponent:11;
- unsigned int negative:1;
- } ieee;
- struct
- {
- unsigned int mantissa1:32;
- unsigned int mantissa0:19;
- unsigned int quiet_nan:1;
- unsigned int exponent:11;
- unsigned int negative:1;
- } ieee_nan;
- };
- typedef struct
- {
- q31_t e;
- long d[40];
- }mp_no;
- float64_t csky_pow_f64(
- float64_t x,
- float64_t y);
- float64_t csky_log_f64(
- float64_t x);
- float64_t csky_exp_f64(
- float64_t x);
- float64_t csky_pow2_f64(
- float64_t x);
- float64_t csky_log2_f64(
- float64_t x);
- float64_t csky_log10_f64(
- float64_t x);
- void csky_power_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q63_t * pResult);
- void csky_power_int32(
- int32_t * pSrc,
- uint32_t blockSize,
- q63_t * pResult);
- void csky_power_int32(
- int32_t * pSrc,
- uint32_t blockSize,
- q63_t * pResult);
- void csky_power_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
- void csky_power_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q63_t * pResult);
- void csky_power_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
- void csky_mean_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q7_t * pResult);
- void csky_mean_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult);
- void csky_mean_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
- void csky_mean_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
- void csky_var_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
- void csky_var_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
- void csky_var_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult);
- void csky_rms_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
- void csky_rms_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
- void csky_rms_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult);
- void csky_std_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
- void csky_std_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
- void csky_std_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult);
- void csky_cmplx_mag_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_mag_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_mag_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_dot_prod_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- uint32_t numSamples,
- q31_t * realResult,
- q31_t * imagResult);
- void csky_cmplx_dot_prod_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- uint32_t numSamples,
- q63_t * realResult,
- q63_t * imagResult);
- void csky_cmplx_dot_prod_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- uint32_t numSamples,
- float32_t * realResult,
- float32_t * imagResult);
- void csky_cmplx_mult_real_q15(
- q15_t * pSrcCmplx,
- q15_t * pSrcReal,
- q15_t * pCmplxDst,
- uint32_t numSamples);
- void csky_cmplx_mult_real_q31(
- q31_t * pSrcCmplx,
- q31_t * pSrcReal,
- q31_t * pCmplxDst,
- uint32_t numSamples);
- void csky_cmplx_mult_real_f32(
- float32_t * pSrcCmplx,
- float32_t * pSrcReal,
- float32_t * pCmplxDst,
- uint32_t numSamples);
- void csky_min_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q7_t * result,
- uint32_t * index);
- void csky_min_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult,
- uint32_t * pIndex);
- void csky_min_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult,
- uint32_t * pIndex);
- void csky_min_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult,
- uint32_t * pIndex);
- void csky_max_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q7_t * pResult,
- uint32_t * pIndex);
- void csky_max_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult,
- uint32_t * pIndex);
- void csky_max_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult,
- uint32_t * pIndex);
- void csky_max_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult,
- uint32_t * pIndex);
- void csky_cmplx_mult_cmplx_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_mult_cmplx_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_mult_cmplx_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_mult_cmplx_re_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_mult_cmplx_re_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t numSamples);
- void csky_cmplx_mult_cmplx_re_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t numSamples);
- void csky_float_to_q31(
- float32_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_float_to_q15(
- float32_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_float_to_q7(
- float32_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_q31_to_q15(
- q31_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- void csky_q31_to_q7(
- q31_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- void csky_q15_to_float(
- q15_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- void csky_q15_to_q31(
- q15_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- void csky_q15_to_q7(
- q15_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @ingroup groupInterpolation
- */
- /**
- * @defgroup BilinearInterpolate Bilinear Interpolation
- *
- * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
- * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
- * determines values between the grid points.
- * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
- * Bilinear interpolation is often used in image processing to rescale images.
- * The CSI DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
- *
- * <b>Algorithm</b>
- * \par
- * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
- * For floating-point, the instance structure is defined as:
- * <pre>
- * typedef struct
- * {
- * uint16_t numRows;
- * uint16_t numCols;
- * float32_t *pData;
- * } csky_bilinear_interp_instance_f32;
- * </pre>
- *
- * \par
- * where <code>numRows</code> specifies the number of rows in the table;
- * <code>numCols</code> specifies the number of columns in the table;
- * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
- * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
- * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
- *
- * \par
- * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
- * <pre>
- * XF = floor(x)
- * YF = floor(y)
- * </pre>
- * \par
- * The interpolated output point is computed as:
- * <pre>
- * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
- * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
- * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
- * + f(XF+1, YF+1) * (x-XF)*(y-YF)
- * </pre>
- * Note that the coordinates (x, y) contain integer and fractional components.
- * The integer components specify which portion of the table to use while the
- * fractional components control the interpolation processor.
- *
- * \par
- * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
- */
- /**
- * @addtogroup BilinearInterpolate
- * @{
- */
- /**
- *
- * @brief Floating-point bilinear interpolation.
- * @param[in,out] S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate.
- * @param[in] Y interpolation coordinate.
- * @return out interpolated value.
- */
- __STATIC_INLINE float32_t csky_bilinear_interp_f32(
- const csky_bilinear_interp_instance_f32 * S,
- float32_t X,
- float32_t Y)
- {
- float32_t out;
- float32_t f00, f01, f10, f11;
- float32_t *pData = S->pData;
- int32_t xIndex, yIndex, index;
- float32_t xdiff, ydiff;
- float32_t b1, b2, b3, b4;
- xIndex = (int32_t) X;
- yIndex = (int32_t) Y;
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
- {
- return (0);
- }
- /* Calculation of index for two nearest points in X-direction */
- index = (xIndex - 1) + (yIndex - 1) * S->numCols;
- /* Read two nearest points in X-direction */
- f00 = pData[index];
- f01 = pData[index + 1];
- /* Calculation of index for two nearest points in Y-direction */
- index = (xIndex - 1) + (yIndex) * S->numCols;
- /* Read two nearest points in Y-direction */
- f10 = pData[index];
- f11 = pData[index + 1];
- /* Calculation of intermediate values */
- b1 = f00;
- b2 = f01 - f00;
- b3 = f10 - f00;
- b4 = f00 - f01 - f10 + f11;
- /* Calculation of fractional part in X */
- xdiff = X - xIndex;
- /* Calculation of fractional part in Y */
- ydiff = Y - yIndex;
- /* Calculation of bi-linear interpolated output */
- out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
- /* return to application */
- return (out);
- }
- /**
- * @}
- */ // end of BilinearInterpolate group
- /**
- * @addtogroup BilinearInterpolate
- * @{
- */
- /**
- *
- * @brief Q31 bilinear interpolation.
- * @param[in,out] S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
- * @return out interpolated value.
- */
- __STATIC_INLINE q31_t csky_bilinear_interp_q31(
- csky_bilinear_interp_instance_q31 * S,
- q31_t X,
- q31_t Y)
- {
- q31_t out; /* Temporary output */
- q31_t acc = 0; /* output */
- q31_t xfract, yfract; /* X, Y fractional parts */
- q31_t x1, x2, y1, y2; /* Nearest output values */
- int32_t rI, cI; /* Row and column indices */
- q31_t *pYData = S->pData; /* pointer to output table values */
- uint32_t nCols = S->numCols; /* num of rows */
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- rI = ((X & (q31_t)0xFFF00000) >> 20);
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- cI = ((Y & (q31_t)0xFFF00000) >> 20);
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
- {
- return (0);
- }
- /* 20 bits for the fractional part */
- /* shift left xfract by 11 to keep 1.31 format */
- xfract = (X & 0x000FFFFF) << 11u;
- /* Read two nearest output values from the index */
- x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
- x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
- /* 20 bits for the fractional part */
- /* shift left yfract by 11 to keep 1.31 format */
- yfract = (Y & 0x000FFFFF) << 11u;
- /* Read two nearest output values from the index */
- y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
- y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
- #ifdef CSKY_SIMD
- /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
- out = mult_32x32_keep32(x1, (0x7FFFFFFF - xfract));
- acc = mult_32x32_keep32(out, (0x7FFFFFFF - yfract));
- /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
- out = mult_32x32_keep32(x2, (0x7FFFFFFF - yfract));
- acc = multAcc_32x32_keep32(acc, out, xfract);
- /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
- out = mult_32x32_keep32(y1, (0x7FFFFFFF - xfract));
- acc = multAcc_32x32_keep32(acc, out, yfract);
- /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
- out = mult_32x32_keep32(y2, xfract);
- acc = multAcc_32x32_keep32(acc, out, yfract);
- #else
- /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
- out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
- acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
- /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
- out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
- acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
- /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
- out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
- acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
- /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
- out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
- acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
- #endif
- /* Convert acc to 1.31(q31) format */
- return ((q31_t)(acc << 2));
- }
- /**
- * @}
- */ // end of BilinearInterpolate group
- /**
- * @addtogroup BilinearInterpolate
- * @{
- */
- /**
- * @brief Q15 bilinear interpolation.
- * @param[in,out] S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
- * @return out interpolated value.
- */
- __STATIC_INLINE q15_t csky_bilinear_interp_q15(
- csky_bilinear_interp_instance_q15 * S,
- q31_t X,
- q31_t Y)
- {
- q63_t acc = 0; /* output */
- q31_t out; /* Temporary output */
- q15_t x1, x2, y1, y2; /* Nearest output values */
- q31_t xfract, yfract; /* X, Y fractional parts */
- int32_t rI, cI; /* Row and column indices */
- q15_t *pYData = S->pData; /* pointer to output table values */
- uint32_t nCols = S->numCols; /* num of rows */
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- rI = ((X & (q31_t)0xFFF00000) >> 20);
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- cI = ((Y & (q31_t)0xFFF00000) >> 20);
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
- {
- return (0);
- }
- /* 20 bits for the fractional part */
- /* xfract should be in 12.20 format */
- xfract = (X & 0x000FFFFF);
- /* Read two nearest output values from the index */
- x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
- x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
- /* 20 bits for the fractional part */
- /* yfract should be in 12.20 format */
- yfract = (Y & 0x000FFFFF);
- /* Read two nearest output values from the index */
- y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
- y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
- /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
- /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
- /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
- #ifdef CSKY_SIMD
- out = mult_32x32_dext_4(x1, (0xFFFFF - xfract));
- acc = mult_32x32_keep64(out, (0xFFFFF - yfract));
- /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
- out = mult_32x32_dext_4(x2, (0xFFFFF - yfract));
- acc = multAcc_32x32_keep64(acc, out, (xfract));
- /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
- out = mult_32x32_dext_4(y1, (0xFFFFF - xfract));
- acc = multAcc_32x32_keep64(acc, out, (yfract));
- /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
- out = mult_32x32_dext_4(y2, (xfract));
- acc = multAcc_32x32_keep64(acc, out, (yfract));
- #else
- out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
- acc = ((q63_t) out * (0xFFFFF - yfract));
- /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
- out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
- acc += ((q63_t) out * (xfract));
- /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
- out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
- acc += ((q63_t) out * (yfract));
- /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
- out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
- acc += ((q63_t) out * (yfract));
- #endif
- /* acc is in 13.51 format and down shift acc by 36 times */
- /* Convert out to 1.15 format */
- return ((q15_t)(acc >> 36));
- }
- /**
- * @}
- */ // end of BilinearInterpolate group
- void test(q7_t *pSrc, q7_t *pDst);
- /**
- * @addtogroup BilinearInterpolate
- * @{
- */
- /**
- * @brief Q7 bilinear interpolation.
- * @param[in,out] S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
- * @return out interpolated value.
- */
- __STATIC_INLINE q7_t csky_bilinear_interp_q7(
- csky_bilinear_interp_instance_q7 * S,
- q31_t X,
- q31_t Y)
- {
- q63_t acc = 0; /* output */
- q31_t out; /* Temporary output */
- q31_t xfract, yfract; /* X, Y fractional parts */
- q7_t x1, x2, y1, y2; /* Nearest output values */
- int32_t rI, cI; /* Row and column indices */
- q7_t *pYData = S->pData; /* pointer to output table values */
- uint32_t nCols = S->numCols; /* num of rows */
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- rI = ((X & (q31_t)0xFFF00000) >> 20);
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- cI = ((Y & (q31_t)0xFFF00000) >> 20);
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
- {
- return (0);
- }
- /* 20 bits for the fractional part */
- /* xfract should be in 12.20 format */
- xfract = (X & (q31_t)0x000FFFFF);
- /* Read two nearest output values from the index */
- x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
- x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
- /* 20 bits for the fractional part */
- /* yfract should be in 12.20 format */
- yfract = (Y & (q31_t)0x000FFFFF);
- /* Read two nearest output values from the index */
- y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
- y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
- /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
- out = ((x1 * (0xFFFFF - xfract)));
- #ifdef CSKY_SIMD
- acc = multAcc_32x32_keep64(acc, out, (0xFFFFF - yfract));
- /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
- out = ((x2 * (0xFFFFF - yfract)));
- acc = multAcc_32x32_keep64(acc, out, xfract);
- /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
- out = ((y1 * (0xFFFFF - xfract)));
- acc = multAcc_32x32_keep64(acc, out, yfract);
- /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
- out = ((y2 * (yfract)));
- acc = multAcc_32x32_keep64(acc, out, xfract);
- #else
- acc = (((q63_t) out * (0xFFFFF - yfract)));
- /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
- out = ((x2 * (0xFFFFF - yfract)));
- acc += (((q63_t) out * (xfract)));
- /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
- out = ((y1 * (0xFFFFF - xfract)));
- acc += (((q63_t) out * (yfract)));
- /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
- out = ((y2 * (yfract)));
- acc += (((q63_t) out * (xfract)));
- #endif
- /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
- return ((q7_t)(acc >> 40));
- }
- /**
- * @}
- */ // end of BilinearInterpolate group
- /**
- * @ingroup groupMath
- */
- /**
- * @defgroup ShiftRight Right Shift
- *
- * Shift the input value to right with appointed bits, its basic format is:
- * <pre>
- * a = (a) >> (shift), 1 =< shift <= bitof(a) - 1.
- * </pre>
- * The basic format is only designed for q31.
- *
- * and the extended format should be rounding to +inf:
- * <pre>
- * a = (a + (1<<(shift - 1)) >> (shift), 1 =< shift <= bitof(a) - 1.
- * </pre>
- *
- * which are designed for q31, q31 positive and q63.
- */
- /**
- * @addtogroup ShiftRight
- * @{
- */
- /**
- * @brief right shift Q31 version
- * @param[in] a input value to be shift.
- * @param[in] shift input positive value, the number of bits to be shift.
- * @param[out] result the shifted a.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is only used for right shift. So, the value of shift is
- * between[1,31].
- */
- __STATIC_INLINE q31_t csky_shr_q31(
- q31_t a,
- q31_t shift)
- {
- q31_t res;
- #ifdef CSKY_SIMD
- __ASM volatile(
- "asr %0, %1, %2\n\t"
- :"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift));
- #else
- res = ((a) >> (shift));
- #endif
- return res;
- }
- #define SHR(a, shift) csky_shr_q31(a, shift)
- /**
- * @}
- */ // end of ShiftRight group
- /**
- * @addtogroup ShiftRight
- * @{
- */
- /**
- * @brief right shift Q31 version
- * @param[in] a input value to be shift.
- * @param[in] shift input positive value, the number of bits to be shift.
- * @param[out] result the shifted a.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is only used for right shift. So, the value of shift is
- * between[1,31]. And the output value is rounding to +inf.
- */
- __STATIC_INLINE q31_t csky_pshr_q31(
- q31_t a,
- q31_t shift)
- {
- q31_t res;
- #ifdef CSKY_SIMD
- __ASM volatile(
- "asr.s32.r %0, %1, %2\n\t"
- :"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift));
- #else
- res = (a >= 0?(SHR((a) + (1<<(shift - 1)), shift))\
- :(SHR((a) + ((1<<shift)>>1) -1, shift)));
- #endif
- return res;
- }
- /**
- * @}
- */ // end of ShiftRight group
- /**
- * @addtogroup ShiftRight
- * @{
- */
- /**
- * @brief right shift Q31 version
- * @param[in] a input positive value to be shift.
- * @param[in] shift input positive value, the number of bits to be shift.
- * @param[out] result the shifted a.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is only used for right shift. So, the value of shift is
- * between[1,31]. And the output value is rounding to +inf.
- */
- __STATIC_INLINE q31_t csky_pshr_pos_q31(
- q31_t a,
- q31_t shift)
- {
- q31_t res;
- #ifdef CSKY_SIMD
- __ASM volatile(
- "asr.s32.r %0, %1, %2\n\t"
- :"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift));
- #else
- res = SHR((a) + (1<<(shift - 1)), shift);
- #endif
- return res;
- }
- /**
- * @}
- */ // end of ShiftRight group
- /**
- * @addtogroup ShiftRight
- * @{
- */
- /**
- * @brief right shift Q63 version
- * @param[in] a input value to be shift.
- * @param[in] shift input positive value, the number of bits to be shift.
- * @param[out] result the shifted a.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is only used for right shift. So, the value of shift is
- * between[1,63]. And the output value is rounding to +inf.
- */
- __STATIC_INLINE q63_t csky_pshr_q63(
- q63_t a,
- q31_t shift)
- {
- q63_t res;
- #ifdef CSKY_SIMD
- __ASM volatile(
- "subi t0, %2, 1\n\t"
- "cmphsi t0, 32\n\t"
- "bt 1f\n\t"
- "movi t1, 1\n\t"
- "lsl t0, t1, t0\n\t"
- "movi t1, 0\n\t"
- "add.s64.s %1, %1, t0\n\t"
- "dext %0, %1, %R1, %2\n\t"
- "asr %R0, %R1, %2\n\t"
- "br 2f\n\t"
- "1:\n\t"
- "subi %2, %2, 32\n\t"
- "subi t0, t0, 32\n\t"
- "movi t1, 1\n\t"
- "lsl t1, t1, t0\n\t"
- "add.s32.s %R1, %R1, t1\n\t"
- "asr %0, %R1, %2\n\t"
- "asri %R0, %R1, 31\n\t"
- "2:\n\t"
- :"=r"(res), "=r"(a),"=r"(shift):"0"(res), "1"(a), "2"(shift):"t0", "t1");
- #else
- res = (a >= 0?(SHR((a) + ((q63_t)1<<(shift - 1)), shift))\
- :(SHR((a) + (((q63_t)1<<shift)>>1) -1, shift)));
- #endif
- return res;
- }
- /**
- * @}
- */ // end of ShiftRight group
- //#define SHR(a, shift) csky_shr_q31(a, shift)
- #define PSHR(a, shift) csky_pshr_q31(a, shift)
- #define PSHR_POSITIVE(a, shift) csky_pshr_pos_q31(a, shift)
- #define PSHR64(a, shift) csky_pshr_q63(a, shift)
- #ifdef CSKY_SIMD
- #else
- /* SMMLAR */
- #define multAcc_32x32_keep32_R(a, x, y) \
- a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
- /* SMMLSR */
- #define multSub_32x32_keep32_R(a, x, y) \
- a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
- /* SMMULR */
- #define mult_32x32_keep32_R(a, x, y) \
- a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
- /* SMMLA */
- #define multAcc_32x32_keep32(a, x, y) \
- a += (q31_t) (((q63_t) x * y) >> 32)
- /* SMMLS */
- #define multSub_32x32_keep32(a, x, y) \
- a -= (q31_t) (((q63_t) x * y) >> 32)
- /* SMMUL */
- #define mult_32x32_keep32(a, x, y) \
- a = (q31_t) (((q63_t) x * y ) >> 32)
- #endif
- #ifdef __cplusplus
- }
- #endif
- #endif /* _CSKY_MATH_H */
- /**
- *
- * End of file.
- */
|