wm_crypto_hard_mbed.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603
  1. #include <stdio.h>
  2. #include <string.h>
  3. #include <stdlib.h>
  4. #include <stdint.h>
  5. #include "core_804.h"
  6. #include "wm_irq.h"
  7. #include "wm_regs.h"
  8. #include "wm_debug.h"
  9. #include "wm_pmu.h"
  10. #include "wm_crypto_hard.h"
  11. #include "wm_crypto_hard_mbed.h"
  12. #include "wm_internal_flash.h"
  13. #include "libtommath.h"
  14. #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
  15. #define biL (ciL << 3) /* bits in limb */
  16. #define biH (ciL << 2) /* half limb size */
  17. extern int mbedtls_mpi_write_binary_nr( const mbedtls_mpi *X,unsigned char *buf, size_t buflen );
  18. extern struct wm_crypto_ctx g_crypto_ctx;
  19. static void rsaMonMulSetLen(const u32 len)
  20. {
  21. RSAN = len;
  22. }
  23. static void rsaMonMulWriteMc(const u32 mc)
  24. {
  25. u32 val = 0;
  26. RSAMC = mc;
  27. val = RSAMC;
  28. if(val == mc)
  29. {
  30. val = 1;
  31. return;
  32. }
  33. }
  34. static void rsaMonMulWriteA(const u32 *const in)
  35. {
  36. memcpy((u32 *)&RSAXBUF, in, RSAN * sizeof(u32));
  37. }
  38. static void rsaMonMulWriteB(const u32 *const in)
  39. {
  40. memcpy((u32 *)&RSAYBUF, in, RSAN * sizeof(u32));
  41. }
  42. static void rsaMonMulWriteM(const u32 *const in)
  43. {
  44. memcpy((u32 *)&RSAMBUF, in, RSAN * sizeof(u32));
  45. }
  46. static void rsaMonMulReadA(u32 *const in)
  47. {
  48. memcpy(in, (u32 *)&RSAXBUF, RSAN * sizeof(u32));
  49. }
  50. static void rsaMonMulReadB(u32 *const in)
  51. {
  52. memcpy(in, (u32 *)&RSAYBUF, RSAN * sizeof(u32));
  53. }
  54. static void rsaMonMulReadD(u32 *const in)
  55. {
  56. memcpy(in, (u32 *)&RSADBUF, RSAN * sizeof(u32));
  57. }
  58. static int rsaMulModRead(unsigned char w, mbedtls_mpi *a)
  59. {
  60. u32 in[64];
  61. int err = 0;
  62. memset(in, 0, 64 * sizeof(u32));
  63. switch(w)
  64. {
  65. case 'A':
  66. rsaMonMulReadA(in);
  67. break;
  68. case 'B':
  69. rsaMonMulReadB(in);
  70. break;
  71. case 'D':
  72. rsaMonMulReadD(in);
  73. break;
  74. }
  75. mp_reverse((unsigned char *)in, RSAN * sizeof(u32));
  76. if ((err = mbedtls_mpi_read_binary(a, (unsigned char *)in, RSAN * sizeof(u32))) != 0)
  77. {
  78. mbedtls_mpi_free(a);
  79. return err;
  80. }
  81. return 0;
  82. }
  83. #if 0
  84. static void rsaMulModDump(unsigned char w)
  85. {
  86. int addr = 0;
  87. switch(w)
  88. {
  89. case 'A':
  90. addr = 0;
  91. break;
  92. case 'B':
  93. addr = 0x100;
  94. break;
  95. case 'D':
  96. addr = 0x300;
  97. break;
  98. }
  99. printf("%c", w);
  100. dumpUint32(" Val:",((volatile u32*) (RSA_BASE_ADDRESS + addr )), RSAN);
  101. }
  102. #endif
  103. static void rsaMulModWrite(unsigned char w, mbedtls_mpi *a)
  104. {
  105. u32 in[64];
  106. memset(in, 0, 64 * sizeof(u32));
  107. mbedtls_mpi_write_binary_nr(a, (unsigned char *)in, a->n * ciL);
  108. //printf("rsaMulModWrite %c\n", w);
  109. //dumpUint32("a", a->p, a->n);
  110. //dumpUint32("in", in, a->n);
  111. switch(w)
  112. {
  113. case 'A':
  114. rsaMonMulWriteA(in);
  115. break;
  116. case 'B':
  117. rsaMonMulWriteB(in);
  118. break;
  119. case 'M':
  120. rsaMonMulWriteM(in);
  121. break;
  122. }
  123. }
  124. static void rsaMonMulAA(void)
  125. {
  126. g_crypto_ctx.rsa_complete = 0;
  127. RSACON = 0x2c;
  128. while (!g_crypto_ctx.rsa_complete)
  129. {
  130. }
  131. g_crypto_ctx.rsa_complete = 0;
  132. }
  133. static void rsaMonMulDD(void)
  134. {
  135. g_crypto_ctx.rsa_complete = 0;
  136. RSACON = 0x20;
  137. while (!g_crypto_ctx.rsa_complete)
  138. {
  139. }
  140. g_crypto_ctx.rsa_complete = 0;
  141. }
  142. static void rsaMonMulAB(void)
  143. {
  144. g_crypto_ctx.rsa_complete = 0;
  145. RSACON = 0x24;
  146. while (!g_crypto_ctx.rsa_complete)
  147. {
  148. }
  149. g_crypto_ctx.rsa_complete = 0;
  150. }
  151. static void rsaMonMulBD(void)
  152. {
  153. g_crypto_ctx.rsa_complete = 0;
  154. RSACON = 0x28;
  155. while (!g_crypto_ctx.rsa_complete)
  156. {
  157. }
  158. g_crypto_ctx.rsa_complete = 0;
  159. }
  160. /******************************************************************************
  161. compute mc, s.t. mc * in = 0xffffffff
  162. ******************************************************************************/
  163. static void rsaCalMc(u32 *mc, const u32 in)
  164. {
  165. u32 y = 1;
  166. u32 i = 31;
  167. u32 left = 1;
  168. u32 right = 0;
  169. for(i = 31; i != 0; i--)
  170. {
  171. left <<= 1; /* 2^(i-1) */
  172. right = (in * y) & left; /* (n*y) mod 2^i */
  173. if( right )
  174. {
  175. y += left;
  176. }
  177. }
  178. *mc = ~y + 1;
  179. }
  180. int tls_crypto_mbedtls_exptmod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *E, const mbedtls_mpi *N )
  181. {
  182. int i = 0;
  183. u32 k = 0, mc = 0, dp0;
  184. volatile u8 monmulFlag = 0;
  185. mbedtls_mpi R, X1, Y;
  186. // mbedtls_mpi T;
  187. int ret = 0;
  188. size_t max_len;
  189. tls_open_peripheral_clock(TLS_PERIPHERAL_TYPE_RSA);
  190. #ifndef CONFIG_KERNEL_NONE
  191. tls_fls_sem_lock();
  192. #endif
  193. max_len = (mbedtls_mpi_bitlen(N) + biL - 1) / biL;
  194. mbedtls_mpi_init(&X1);
  195. mbedtls_mpi_init(&Y);
  196. mbedtls_mpi_init(&R);
  197. MBEDTLS_MPI_CHK( mbedtls_mpi_shrink((mbedtls_mpi *)N, max_len ) );
  198. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R, 1 ) );
  199. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &R, N->n * biL ) );
  200. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &R, &R, N ) );
  201. MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &R, N->n ) );
  202. //dumpUint32("R", R.p, R.n);
  203. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X1, A, &R ) );//X = A * R
  204. //dumpUint32("X = A * R", X1.p, X1.n);
  205. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &X1, &X1, N ) ); //X = A * R mod N
  206. MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &X1, N->n ) );
  207. //dumpUint32("X = A * R mod N", X1.p, X1.n);
  208. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, &R ) );
  209. dp0 = (u32)N->p[0];
  210. rsaCalMc(&mc, dp0);
  211. rsaMonMulSetLen((const u32)N->n);
  212. rsaMonMulWriteMc(mc);
  213. rsaMulModWrite('M', (mbedtls_mpi *)N);
  214. rsaMulModWrite('B', &X1);
  215. rsaMulModWrite('A', &Y);
  216. k = mbedtls_mpi_bitlen(E);
  217. //printf("mbedtls e bit len %d\n", k);
  218. for(i = k - 1; i >= 0; i--)
  219. {
  220. //montMulMod(&Y, &Y, n, &Y);
  221. //if(pstm_get_bit(e, i))
  222. // montMulMod(&Y, &X, n, &Y);
  223. if(monmulFlag == 0)
  224. {
  225. rsaMonMulAA();
  226. monmulFlag = 1;
  227. //rsaMulModDump('D');
  228. }
  229. else
  230. {
  231. rsaMonMulDD();
  232. monmulFlag = 0;
  233. //rsaMulModDump('A');
  234. }
  235. if(mbedtls_mpi_get_bit(E, i))
  236. {
  237. if(monmulFlag == 0)
  238. {
  239. rsaMonMulAB();
  240. monmulFlag = 1;
  241. //rsaMulModDump('D');
  242. }
  243. else
  244. {
  245. rsaMonMulBD();
  246. monmulFlag = 0;
  247. //rsaMulModDump('A');
  248. }
  249. }
  250. }
  251. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R, 1 ) );
  252. rsaMulModWrite('B', &R);
  253. //montMulMod(&Y, &R, n, res);
  254. if(monmulFlag == 0)
  255. {
  256. rsaMonMulAB();
  257. rsaMulModRead('D', X);
  258. }
  259. else
  260. {
  261. rsaMonMulBD();
  262. rsaMulModRead('A', X);
  263. }
  264. MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( X, N->n ) );
  265. cleanup:
  266. mbedtls_mpi_free(&X1);
  267. mbedtls_mpi_free(&Y);
  268. mbedtls_mpi_free(&R);
  269. #ifndef CONFIG_KERNEL_NONE
  270. tls_fls_sem_unlock();
  271. #endif
  272. tls_close_peripheral_clock(TLS_PERIPHERAL_TYPE_RSA);
  273. return ret;
  274. }
  275. #if 0
  276. #if 1
  277. typedef s32 psPool_t;
  278. #include "libtommath.h"
  279. #define pstm_set(a, b) mp_set((mp_int *)a, b)
  280. #define pstm_init(pool, a) wpa_mp_init((mp_int *)a)
  281. #define pstm_count_bits(a) mp_count_bits((mp_int *)a)
  282. #define pstm_init_for_read_unsigned_bin(pool, a, len) mp_init_for_read_unsigned_bin((mp_int *)a, len)
  283. #define pstm_read_unsigned_bin(a, b, c) mp_read_unsigned_bin((mp_int *)a, b, c)
  284. #define pstm_copy(a, b) mp_copy((mp_int *)a, (mp_int *)b)
  285. #define pstm_clear(a) mp_clear((mp_int *)a)
  286. #define pstm_clamp(a) mp_clamp((mp_int *)a)
  287. #define pstm_mulmod(pool, a, b, c, d) mp_mulmod((mp_int *)a, (mp_int *)b, (mp_int *)c, (mp_int *)d)
  288. #define pstm_exptmod(pool, G, X, P, Y) mp_exptmod((mp_int *)G, (mp_int *)X, (mp_int *)P, (mp_int *)Y)
  289. #define pstm_reverse mp_reverse
  290. #define pstm_cmp mp_cmp
  291. #define pstm_to_unsigned_bin_nr(pool, a, b) mp_to_unsigned_bin_nr((mp_int *)a, (unsigned char *)b)
  292. #define pstm_2expt(a, b) mp_2expt((mp_int *)a, b)
  293. #define pstm_mod(pool, a, b, c) mp_mod((mp_int *)a, (mp_int *)b, (mp_int *)c)
  294. #endif
  295. uint8_t modulus[] = {
  296. 0xdf, 0x83, 0xe4, 0x76, 0x2d, 0x00, 0x61, 0xf6, 0xd0, 0x8d, 0x4a, 0x04, 0x66, 0xb1, 0xd5, 0x55,
  297. 0xef, 0x71, 0xb5, 0xa5, 0x4e, 0x69, 0x44, 0xd3, 0x4f, 0xb8, 0x3d, 0xec, 0xb1, 0x1d, 0x5f, 0x82,
  298. 0x6a, 0x48, 0x21, 0x00, 0x7f, 0xd7, 0xd5, 0xf6, 0x82, 0x35, 0xc2, 0xa6, 0x67, 0xa3, 0x53, 0x2d,
  299. 0x3a, 0x83, 0x9a, 0xba, 0x60, 0xc2, 0x11, 0x22, 0xc2, 0x35, 0x83, 0xe9, 0x10, 0xa1, 0xb4, 0xa6,
  300. 0x74, 0x57, 0x99, 0xd3, 0xa8, 0x6a, 0x21, 0x83, 0x76, 0xc1, 0x67, 0xde, 0xd8, 0xec, 0xdf, 0xf7,
  301. 0xc0, 0x1b, 0xf6, 0xfa, 0x14, 0xa4, 0x0a, 0xec, 0xd1, 0xee, 0xc0, 0x76, 0x4c, 0xcd, 0x4a, 0x0a,
  302. 0x5c, 0x96, 0xf2, 0xc9, 0xa4, 0x67, 0x03, 0x97, 0x2e, 0x17, 0xcd, 0xa9, 0x27, 0x9d, 0xa6, 0x35,
  303. 0x5f, 0x7d, 0xb1, 0x6b, 0x68, 0x0e, 0x99, 0xc7, 0xdd, 0x5d, 0x6f, 0x15, 0xce, 0x8e, 0x85, 0x33
  304. };
  305. static const uint8_t publicExponent[] = {
  306. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  307. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  308. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  309. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  310. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  311. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  312. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  313. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01
  314. };
  315. static const uint8_t privateExponent[] = {
  316. 0xc6, 0x15, 0x3d, 0x02, 0xfe, 0x1e, 0xb8, 0xb2, 0xe3, 0x60, 0x53, 0x98, 0x52, 0xea, 0x87, 0x06,
  317. 0x01, 0x8d, 0xe4, 0x4c, 0xfb, 0x90, 0x8f, 0x4e, 0x35, 0xf8, 0x31, 0xe8, 0xf1, 0x8d, 0xf6, 0x76,
  318. 0xbd, 0x79, 0xee, 0xc5, 0x62, 0x87, 0x05, 0x37, 0xd1, 0x6d, 0x93, 0x73, 0xa5, 0xa5, 0x38, 0xb1,
  319. 0x7c, 0x89, 0xe5, 0x36, 0x07, 0x49, 0xf5, 0xa5, 0xb8, 0x37, 0x75, 0x0f, 0xb7, 0x8d, 0x97, 0x69,
  320. 0xc4, 0xd4, 0x8a, 0xb7, 0xfe, 0x74, 0x48, 0x45, 0x58, 0x47, 0x29, 0xa3, 0x0b, 0xa7, 0xdc, 0x55,
  321. 0x98, 0x18, 0x8c, 0xd4, 0x52, 0xf5, 0xc9, 0xe8, 0x40, 0xce, 0x97, 0x46, 0x14, 0x1f, 0x62, 0x94,
  322. 0xc3, 0x21, 0x1e, 0x5d, 0x49, 0x59, 0x31, 0xeb, 0xc4, 0x95, 0xf9, 0x33, 0x70, 0xa7, 0x90, 0xc3,
  323. 0x9e, 0x98, 0x58, 0xa4, 0x00, 0xa4, 0x0f, 0xf3, 0x51, 0x80, 0xc6, 0x14, 0xfb, 0xd5, 0x5b, 0x01
  324. };
  325. uint8_t Digest_signature_pkcs1_padding_out[] = {
  326. 0x07, 0x2d, 0x25, 0xde, 0xa5, 0xfd, 0x7c, 0xb0, 0x92, 0xb4, 0xee, 0x57, 0xe8, 0xd3, 0x79, 0x74,
  327. 0x59, 0x25, 0x34, 0xef, 0xfd, 0x2b, 0xda, 0x8b, 0xa4, 0x40, 0x4e, 0xd8, 0x92, 0x6e, 0xee, 0x84,
  328. 0x52, 0xb0, 0xe1, 0x0e, 0xa8, 0xa9, 0x68, 0x62, 0x1b, 0x51, 0xed, 0x50, 0x84, 0x98, 0x6a, 0x97,
  329. 0x98, 0xe8, 0xcf, 0x3f, 0x85, 0xd3, 0x28, 0x26, 0xf3, 0x7a, 0x52, 0x4b, 0x04, 0x95, 0xe6, 0xfd,
  330. 0xfa, 0x41, 0xf3, 0xac, 0x8a, 0x6d, 0x74, 0x91, 0x8c, 0x87, 0x52, 0x38, 0x08, 0x49, 0xf4, 0x60,
  331. 0xcd, 0x4b, 0x1a, 0x9e, 0x52, 0x60, 0xf2, 0x73, 0x60, 0x31, 0x78, 0x37, 0xd9, 0x42, 0xc4, 0x61,
  332. 0x43, 0xcf, 0x6d, 0x55, 0xee, 0x05, 0x19, 0xb7, 0xc3, 0x37, 0xa7, 0xa8, 0xa4, 0xbd, 0xf1, 0xac,
  333. 0x8e, 0x39, 0x20, 0x59, 0xcd, 0xfc, 0x50, 0x16, 0x81, 0x2d, 0xeb, 0xba, 0x95, 0xe9, 0x38, 0xa5,
  334. };
  335. static const uint8_t Digest[] = {
  336. 0x00, 0x02, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
  337. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
  338. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
  339. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
  340. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
  341. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
  342. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00,
  343. 0xe4, 0x2c, 0x9f, 0x12, 0xf7, 0xd2, 0x67, 0x3a, 0x23, 0xea, 0x85, 0x61, 0xeb, 0xb2, 0xc2, 0x19,
  344. 0xdc, 0xd9, 0xf1, 0xaa
  345. };
  346. static const uint8_t base[] = {
  347. 0x79, 0x91, 0x2F, 0x5D, 0x2C, 0x58, 0xED, 0xBF, 0xF8, 0x35, 0x75, 0x9B, 0x06, 0xF5, 0x08, 0x66,
  348. 0xDD, 0xA4, 0xA8, 0x8D, 0x39, 0xDB, 0xB0, 0x20, 0xDB, 0xAE, 0xFC, 0x17, 0x16, 0xC2, 0x07, 0x77,
  349. 0x01, 0x45, 0xA7, 0xC3, 0xFE, 0xEA, 0x98, 0x62, 0x50, 0x18, 0xB3, 0x1F, 0x6D, 0xF6, 0x39, 0xFA,
  350. 0x1F, 0x2F, 0xB4, 0xBD, 0x72, 0x1D, 0x09, 0x51, 0x3D, 0xA0, 0x2B, 0xEC, 0x89, 0xD9, 0x78, 0xBD,
  351. 0xE4, 0x8A, 0x3D, 0x48, 0x36, 0xD2, 0x25, 0xF2, 0x24, 0xC2, 0x60, 0xC6, 0x88, 0x50, 0x47, 0xB8,
  352. 0xD4, 0x3E, 0x82, 0x8C, 0x94, 0x4B, 0x53, 0x4B, 0x7C, 0xE9, 0x52, 0x3D, 0x96, 0xEF, 0x08, 0x3E,
  353. 0xCA, 0xA7, 0x4A, 0xD8, 0x18, 0xFB, 0x97, 0xCE, 0x5F, 0x9A, 0x75, 0x79, 0x22, 0x62, 0x47, 0x79,
  354. 0xFA, 0x8D, 0xD5, 0x42, 0x61, 0xB4, 0xFF, 0x5D, 0xF4, 0x89, 0x0C, 0x69, 0x3D, 0x3A, 0x3A, 0x2D
  355. };
  356. int initMpiParams(u32 len, mbedtls_mpi *pa, mbedtls_mpi *pb, mbedtls_mpi *pm, int isRand){
  357. u32 * a = NULL;
  358. u32 * b = NULL;
  359. u32 * m = NULL;
  360. int err = -1;
  361. a = tls_mem_alloc(64 * sizeof(u32));
  362. if(a == NULL)
  363. goto out;
  364. b = tls_mem_alloc(64 * sizeof(u32));
  365. if(b== NULL)
  366. goto out;
  367. m = tls_mem_alloc(64 * sizeof(u32));
  368. if(m == NULL)
  369. goto out;
  370. memcpy(a, base, sizeof(base));
  371. memcpy(b, privateExponent, sizeof(privateExponent));
  372. memcpy(m, modulus, sizeof(modulus));
  373. dumpBuffer("modulus", (unsigned char *)m, len * 4);
  374. dumpBuffer("exponent", (unsigned char *)b, len * 4);
  375. dumpBuffer("base", (unsigned char *)a, len * 4);
  376. mbedtls_mpi_init(pa);
  377. if ((err = mbedtls_mpi_read_binary(pa, (unsigned char *)a, len * sizeof(u32))) != PS_SUCCESS) {
  378. mbedtls_mpi_free(pa);
  379. goto out;
  380. }
  381. mbedtls_mpi_init(pb);
  382. if ((err = mbedtls_mpi_read_binary(pb, (unsigned char *)b, len * sizeof(u32))) != PS_SUCCESS) {
  383. mbedtls_mpi_free(pa);
  384. mbedtls_mpi_free(pb);
  385. goto out;
  386. }
  387. mbedtls_mpi_init(pm);
  388. if ((err = mbedtls_mpi_read_binary(pm, (unsigned char *)m, len * sizeof(u32))) != PS_SUCCESS) {
  389. mbedtls_mpi_free(pa);
  390. mbedtls_mpi_free(pb);
  391. mbedtls_mpi_free(pm);
  392. goto out;
  393. }
  394. out:
  395. if(a)
  396. tls_mem_free(a);
  397. if(b)
  398. tls_mem_free(b);
  399. if(m)
  400. tls_mem_free(m);
  401. return err;
  402. }
  403. int initPstmParams(u32 len, hstm_int *pa, hstm_int *pb, hstm_int *pm, int isRand){
  404. u32 * a = NULL;
  405. u32 * b = NULL;
  406. u32 * m = NULL;
  407. int err = -1;
  408. a = tls_mem_alloc(64 * sizeof(u32));
  409. if(a == NULL)
  410. goto out;
  411. b = tls_mem_alloc(64 * sizeof(u32));
  412. if(b== NULL)
  413. goto out;
  414. m = tls_mem_alloc(64 * sizeof(u32));
  415. if(m == NULL)
  416. goto out;
  417. memcpy(a, base, sizeof(base));
  418. memcpy(b, privateExponent, sizeof(privateExponent));
  419. memcpy(m, modulus, sizeof(modulus));
  420. // pstm_reverse((unsigned char *)a, len * sizeof(u32));
  421. // pstm_reverse((unsigned char *)b, len * sizeof(u32));
  422. // pstm_reverse((unsigned char *)m, len * sizeof(u32));
  423. dumpBuffer("modulus", (unsigned char *)m, len * 4);
  424. dumpBuffer("exponent", (unsigned char *)b, len * 4);
  425. dumpBuffer("base", (unsigned char *)a, len * 4);
  426. if ((err = pstm_init_for_read_unsigned_bin(NULL, pa, len * sizeof(u32))) != PS_SUCCESS){
  427. goto out;
  428. }
  429. if ((err = pstm_read_unsigned_bin(pa, (unsigned char *)a, len * sizeof(u32))) != PS_SUCCESS) {
  430. pstm_clear(pa);
  431. goto out;
  432. }
  433. if ((err = pstm_init_for_read_unsigned_bin(NULL, pb, len * sizeof(u32))) != PS_SUCCESS){
  434. pstm_clear(pa);
  435. goto out;
  436. }
  437. if ((err = pstm_read_unsigned_bin(pb, (unsigned char *)b, len * sizeof(u32))) != PS_SUCCESS) {
  438. pstm_clear(pa);
  439. pstm_clear(pb);
  440. goto out;
  441. }
  442. if ((err = pstm_init_for_read_unsigned_bin(NULL, pm, len * sizeof(u32))) != PS_SUCCESS){
  443. pstm_clear(pa);
  444. pstm_clear(pb);
  445. goto out;
  446. }
  447. if ((err = pstm_read_unsigned_bin(pm, (unsigned char *)m, len * sizeof(u32))) != PS_SUCCESS) {
  448. pstm_clear(pa);
  449. pstm_clear(pb);
  450. pstm_clear(pm);
  451. goto out;
  452. }
  453. out:
  454. if(a)
  455. tls_mem_free(a);
  456. if(b)
  457. tls_mem_free(b);
  458. if(m)
  459. tls_mem_free(m);
  460. return err;
  461. }
  462. int exptModTest(u32 len){
  463. hstm_int pa;
  464. hstm_int pb;
  465. hstm_int pm;
  466. hstm_int pres;
  467. hstm_int mres;
  468. mbedtls_mpi ppa;
  469. mbedtls_mpi ppb;
  470. mbedtls_mpi ppm;
  471. mbedtls_mpi ppres;
  472. mbedtls_mpi pmres;
  473. int err = -1;
  474. if((err = initMpiParams(len, &ppa, &ppb, &ppm, 1)))
  475. {
  476. return err;
  477. }
  478. if((err = initPstmParams(len, &pa, &pb, &pm, 1)))
  479. {
  480. return err;
  481. }
  482. dumpUint32("mbed ppa", ppa.p, ppa.n);
  483. dumpUint32("mbed ppb", ppb.p, ppb.n);
  484. dumpUint32("mbed ppm", ppm.p, ppm.n);
  485. pstm_init(NULL, &pres);
  486. pstm_init(NULL, &mres);
  487. mbedtls_mpi_init(&ppres);
  488. mbedtls_mpi_init(&pmres);
  489. tls_crypto_mbedtls_exptmod(&ppres, &ppa, &ppb, &ppm);
  490. dumpUint32("mbed ppres", ppres.p, ppres.n);
  491. mbedtls_mpi_exp_mod(&pmres, &ppa, &ppb, &ppm, NULL);
  492. dumpUint32("mbed pmres", pmres.p, pmres.n);
  493. tls_crypto_exptmod(&pa, &pb, &pm, &pres);
  494. printf("pres:\n");
  495. dumpUint32("pres", pres.dp, pres.used);
  496. //montExptMod(&pa, &pb, &pm, &pres);
  497. //rsaMontExptMod(&pa, &pb, &pm, &mres);
  498. pstm_exptmod(NULL, &pa, &pb, &pm, &mres);
  499. if(pstm_cmp(&mres, &pres) != 0)
  500. {
  501. #if 1
  502. int i = 0;
  503. printf("mres:\n");
  504. for(;i<mres.used;i++)
  505. {
  506. printf("%x ", mres.dp[i]);
  507. }
  508. printf("\n");
  509. printf("pres:\n");
  510. for(i=0;i<pres.used;i++)
  511. {
  512. printf("%x ", pres.dp[i]);
  513. }
  514. printf("\n");
  515. #endif
  516. err = -1;
  517. goto out;
  518. }
  519. else
  520. {
  521. #if 1
  522. int i = 0;
  523. printf("mres:\n");
  524. for(;i<mres.used;i++)
  525. {
  526. printf("%x ", mres.dp[i]);
  527. }
  528. printf("\n");
  529. printf("pres:\n");
  530. for(i=0;i<pres.used;i++)
  531. {
  532. printf("%x ", pres.dp[i]);
  533. }
  534. printf("\n");
  535. #endif
  536. }
  537. err = 0;
  538. out:
  539. pstm_clear(&pa);
  540. pstm_clear(&pb);
  541. pstm_clear(&pm);
  542. pstm_clear(&pres);
  543. pstm_clear(&mres);
  544. mbedtls_mpi_free(&ppa);
  545. mbedtls_mpi_free(&ppb);
  546. mbedtls_mpi_free(&ppm);
  547. mbedtls_mpi_free(&ppres);
  548. mbedtls_mpi_free(&pmres);
  549. printf("exptModTest err %d\n", err);
  550. return err;
  551. }
  552. #endif