| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113 |
- /*Functtion :多项式拟合polyfit
- **********************************************/
- #include <stdio.h>
- //#include <conio.h>
- #include <stdlib.h>
- #include <math.h>
- #include "wm_mem.h"
- void polyfit_verify(double x, double* a)
- {
- double y1 = a[1]*x + a[0];
- printf("x=%d, y1=%d\n", (int)x, (int)(y1+0.5));
- }
- /*==================polyfit(n,x,y,poly_n,a)===================*/
- /*=======拟合y=a0+a1*x+a2*x^2+……+apoly_n*x^poly_n========*/
- /*=====n是数据个数 xy是数据值 poly_n是多项式的项数======*/
- /*===返回a0,a1,a2,……a[poly_n],系数比项数多一(常数项)=====*/
- void polyfit(int n,double x[],double y[],int poly_n,double a[])
- {
- int i,j;
- double *tempx,*tempy,*sumxx,*sumxy,*ata;
- void gauss_solve(int n,double A[],double x[],double b[]);
- tempx=tls_mem_calloc(n,sizeof(double));
- sumxx=tls_mem_calloc(poly_n*2+1,sizeof(double));
- tempy=tls_mem_calloc(n,sizeof(double));
- sumxy=tls_mem_calloc(poly_n+1,sizeof(double));
- ata=tls_mem_calloc((poly_n+1)*(poly_n+1),sizeof(double));
- for (i=0;i<n;i++)
- {
- tempx[i]=1;
- tempy[i]=y[i];
- }
- for (i=0;i<2*poly_n+1;i++)
- for (sumxx[i]=0,j=0;j<n;j++)
- {
- sumxx[i]+=tempx[j];
- tempx[j]*=x[j];
- }
- for (i=0;i<poly_n+1;i++)
- for (sumxy[i]=0,j=0;j<n;j++)
- {
- sumxy[i]+=tempy[j];
- tempy[j]*=x[j];
- }
- for (i=0;i<poly_n+1;i++)
- for (j=0;j<poly_n+1;j++)
- ata[i*(poly_n+1)+j]=sumxx[i+j];
- gauss_solve(poly_n+1,ata,a,sumxy);
- tls_mem_free(tempx);
- tls_mem_free(sumxx);
- tls_mem_free(tempy);
- tls_mem_free(sumxy);
- tls_mem_free(ata);
- }
- void gauss_solve(int n,double A[],double x[],double b[])
- {
- int i,j,k,r;
- double max;
- for (k=0;k<n-1;k++)
- {
- max=fabs(A[k*n+k]); /*find maxmum*/
- r=k;
- for (i=k+1;i<n-1;i++)
- if (max<fabs(A[i*n+i]))
- {
- max=fabs(A[i*n+i]);
- r=i;
- }
- if (r!=k)
- for (i=0;i<n;i++) /*change array:A[k]&A[r] */
- {
- max=A[k*n+i];
- A[k*n+i]=A[r*n+i];
- A[r*n+i]=max;
- }
- max=b[k]; /*change array:b[k]&b[r] */
- b[k]=b[r];
- b[r]=max;
- for (i=k+1;i<n;i++)
- {
- for (j=k+1;j<n;j++)
- A[i*n+j]-=A[i*n+k]*A[k*n+j]/A[k*n+k];
- b[i]-=A[i*n+k]*b[k]/A[k*n+k];
- }
- }
- for (i=n-1;i>=0;x[i]/=A[i*n+i],i--)
- for (j=i+1,x[i]=b[i];j<n;j++)
- x[i]-=A[i*n+j]*x[j];
- }
- void polyfit_test(void)
- {
- int i,n=2,poly_n=1;
- double x[2]={15174, 19196},y[2]={5000, 9986};
- double a[2];
- void polyfit(int n,double *x,double *y,int poly_n,double a[]);
- polyfit(n,x,y,poly_n,a);
- for (i=0;i<poly_n+1;i++)/*这里是升序排列,Matlab是降序排列*/
- printf("a[%d]=%lf \n",i,a[i]);
- for(i = 0; i < n; i++)
- {
- polyfit_verify(x[i], a);
- }
- }
|