| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359 |
- /*
- Copyright 2018 Embedded Microprocessor Benchmark Consortium (EEMBC)
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- Original Author: Shay Gal-on
- */
- #include "coremark.h"
- /*
- Topic: Description
- Matrix manipulation benchmark
- This very simple algorithm forms the basis of many more complex
- algorithms.
- The tight inner loop is the focus of many optimizations (compiler as
- well as hardware based) and is thus relevant for embedded processing.
- The total available data space will be divided to 3 parts:
- NxN Matrix A - initialized with small values (upper 3/4 of the bits all
- zero). NxN Matrix B - initialized with medium values (upper half of the bits all
- zero). NxN Matrix C - used for the result.
- The actual values for A and B must be derived based on input that is not
- available at compile time.
- */
- ee_s16 matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val);
- ee_s16 matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval);
- void matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val);
- void matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
- void matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
- void matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B);
- void matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val);
- #define matrix_test_next(x) (x + 1)
- #define matrix_clip(x, y) ((y) ? (x)&0x0ff : (x)&0x0ffff)
- #define matrix_big(x) (0xf000 | (x))
- #define bit_extract(x, from, to) (((x) >> (from)) & (~(0xffffffff << (to))))
- #if CORE_DEBUG
- void
- printmat(MATDAT *A, ee_u32 N, char *name)
- {
- ee_u32 i, j;
- ee_printf("Matrix %s [%dx%d]:\n", name, N, N);
- for (i = 0; i < N; i++)
- {
- for (j = 0; j < N; j++)
- {
- if (j != 0)
- ee_printf(",");
- ee_printf("%d", A[i * N + j]);
- }
- ee_printf("\n");
- }
- }
- void
- printmatC(MATRES *C, ee_u32 N, char *name)
- {
- ee_u32 i, j;
- ee_printf("Matrix %s [%dx%d]:\n", name, N, N);
- for (i = 0; i < N; i++)
- {
- for (j = 0; j < N; j++)
- {
- if (j != 0)
- ee_printf(",");
- ee_printf("%d", C[i * N + j]);
- }
- ee_printf("\n");
- }
- }
- #endif
- /* Function: core_bench_matrix
- Benchmark function
- Iterate <matrix_test> N times,
- changing the matrix values slightly by a constant amount each time.
- */
- ee_u16
- core_bench_matrix(mat_params *p, ee_s16 seed, ee_u16 crc)
- {
- ee_u32 N = p->N;
- MATRES *C = p->C;
- MATDAT *A = p->A;
- MATDAT *B = p->B;
- MATDAT val = (MATDAT)seed;
- crc = crc16(matrix_test(N, C, A, B, val), crc);
- return crc;
- }
- /* Function: matrix_test
- Perform matrix manipulation.
- Parameters:
- N - Dimensions of the matrix.
- C - memory for result matrix.
- A - input matrix
- B - operator matrix (not changed during operations)
- Returns:
- A CRC value that captures all results calculated in the function.
- In particular, crc of the value calculated on the result matrix
- after each step by <matrix_sum>.
- Operation:
- 1 - Add a constant value to all elements of a matrix.
- 2 - Multiply a matrix by a constant.
- 3 - Multiply a matrix by a vector.
- 4 - Multiply a matrix by a matrix.
- 5 - Add a constant value to all elements of a matrix.
- After the last step, matrix A is back to original contents.
- */
- ee_s16
- matrix_test(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B, MATDAT val)
- {
- ee_u16 crc = 0;
- MATDAT clipval = matrix_big(val);
- matrix_add_const(N, A, val); /* make sure data changes */
- #if CORE_DEBUG
- printmat(A, N, "matrix_add_const");
- #endif
- matrix_mul_const(N, C, A, val);
- crc = crc16(matrix_sum(N, C, clipval), crc);
- #if CORE_DEBUG
- printmatC(C, N, "matrix_mul_const");
- #endif
- matrix_mul_vect(N, C, A, B);
- crc = crc16(matrix_sum(N, C, clipval), crc);
- #if CORE_DEBUG
- printmatC(C, N, "matrix_mul_vect");
- #endif
- matrix_mul_matrix(N, C, A, B);
- crc = crc16(matrix_sum(N, C, clipval), crc);
- #if CORE_DEBUG
- printmatC(C, N, "matrix_mul_matrix");
- #endif
- matrix_mul_matrix_bitextract(N, C, A, B);
- crc = crc16(matrix_sum(N, C, clipval), crc);
- #if CORE_DEBUG
- printmatC(C, N, "matrix_mul_matrix_bitextract");
- #endif
- matrix_add_const(N, A, -val); /* return matrix to initial value */
- return crc;
- }
- /* Function : matrix_init
- Initialize the memory block for matrix benchmarking.
- Parameters:
- blksize - Size of memory to be initialized.
- memblk - Pointer to memory block.
- seed - Actual values chosen depend on the seed parameter.
- p - pointers to <mat_params> containing initialized matrixes.
- Returns:
- Matrix dimensions.
- Note:
- The seed parameter MUST be supplied from a source that cannot be
- determined at compile time
- */
- ee_u32
- core_init_matrix(ee_u32 blksize, void *memblk, ee_s32 seed, mat_params *p)
- {
- ee_u32 N = 0;
- MATDAT *A;
- MATDAT *B;
- ee_s32 order = 1;
- MATDAT val;
- ee_u32 i = 0, j = 0;
- if (seed == 0)
- seed = 1;
- while (j < blksize)
- {
- i++;
- j = i * i * 2 * 4;
- }
- N = i - 1;
- A = (MATDAT *)align_mem(memblk);
- B = A + N * N;
- for (i = 0; i < N; i++)
- {
- for (j = 0; j < N; j++)
- {
- seed = ((order * seed) % 65536);
- val = (seed + order);
- val = matrix_clip(val, 0);
- B[i * N + j] = val;
- val = (val + order);
- val = matrix_clip(val, 1);
- A[i * N + j] = val;
- order++;
- }
- }
- p->A = A;
- p->B = B;
- p->C = (MATRES *)align_mem(B + N * N);
- p->N = N;
- #if CORE_DEBUG
- printmat(A, N, "A");
- printmat(B, N, "B");
- #endif
- return N;
- }
- /* Function: matrix_sum
- Calculate a function that depends on the values of elements in the
- matrix.
- For each element, accumulate into a temporary variable.
- As long as this value is under the parameter clipval,
- add 1 to the result if the element is bigger then the previous.
- Otherwise, reset the accumulator and add 10 to the result.
- */
- ee_s16
- matrix_sum(ee_u32 N, MATRES *C, MATDAT clipval)
- {
- MATRES tmp = 0, prev = 0, cur = 0;
- ee_s16 ret = 0;
- ee_u32 i, j;
- for (i = 0; i < N; i++)
- {
- for (j = 0; j < N; j++)
- {
- cur = C[i * N + j];
- tmp += cur;
- if (tmp > clipval)
- {
- ret += 10;
- tmp = 0;
- }
- else
- {
- ret += (cur > prev) ? 1 : 0;
- }
- prev = cur;
- }
- }
- return ret;
- }
- /* Function: matrix_mul_const
- Multiply a matrix by a constant.
- This could be used as a scaler for instance.
- */
- void
- matrix_mul_const(ee_u32 N, MATRES *C, MATDAT *A, MATDAT val)
- {
- ee_u32 i, j;
- for (i = 0; i < N; i++)
- {
- for (j = 0; j < N; j++)
- {
- C[i * N + j] = (MATRES)A[i * N + j] * (MATRES)val;
- }
- }
- }
- /* Function: matrix_add_const
- Add a constant value to all elements of a matrix.
- */
- void
- matrix_add_const(ee_u32 N, MATDAT *A, MATDAT val)
- {
- ee_u32 i, j;
- for (i = 0; i < N; i++)
- {
- for (j = 0; j < N; j++)
- {
- A[i * N + j] += val;
- }
- }
- }
- /* Function: matrix_mul_vect
- Multiply a matrix by a vector.
- This is common in many simple filters (e.g. fir where a vector of
- coefficients is applied to the matrix.)
- */
- void
- matrix_mul_vect(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B)
- {
- ee_u32 i, j;
- for (i = 0; i < N; i++)
- {
- C[i] = 0;
- for (j = 0; j < N; j++)
- {
- C[i] += (MATRES)A[i * N + j] * (MATRES)B[j];
- }
- }
- }
- /* Function: matrix_mul_matrix
- Multiply a matrix by a matrix.
- Basic code is used in many algorithms, mostly with minor changes such as
- scaling.
- */
- void
- matrix_mul_matrix(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B)
- {
- ee_u32 i, j, k;
- for (i = 0; i < N; i++)
- {
- for (j = 0; j < N; j++)
- {
- C[i * N + j] = 0;
- for (k = 0; k < N; k++)
- {
- C[i * N + j] += (MATRES)A[i * N + k] * (MATRES)B[k * N + j];
- }
- }
- }
- }
- /* Function: matrix_mul_matrix_bitextract
- Multiply a matrix by a matrix, and extract some bits from the result.
- Basic code is used in many algorithms, mostly with minor changes such as
- scaling.
- */
- void
- matrix_mul_matrix_bitextract(ee_u32 N, MATRES *C, MATDAT *A, MATDAT *B)
- {
- ee_u32 i, j, k;
- for (i = 0; i < N; i++)
- {
- for (j = 0; j < N; j++)
- {
- C[i * N + j] = 0;
- for (k = 0; k < N; k++)
- {
- MATRES tmp = (MATRES)A[i * N + k] * (MATRES)B[k * N + j];
- C[i * N + j] += bit_extract(tmp, 2, 4) * bit_extract(tmp, 5, 7);
- }
- }
- }
- }
|