luat_crc.c 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281
  1. #include "luat_base.h"
  2. #include "luat_crypto.h"
  3. #include "luat_malloc.h"
  4. uint8_t luat_crc8(const void *data, uint32_t len, uint8_t start, uint8_t poly, uint8_t is_reverse)
  5. {
  6. uint32_t i;
  7. uint8_t CRC8 = start;
  8. uint8_t wTemp = poly;
  9. uint8_t *Src = (uint8_t *)data;
  10. if (is_reverse)
  11. {
  12. poly = 0;
  13. for (i = 0; i < 8; i++)
  14. {
  15. if (wTemp & (1 << (7 - i)))
  16. {
  17. poly |= 1 << i;
  18. }
  19. }
  20. while (len--)
  21. {
  22. CRC8 ^= *Src++;
  23. for (i = 0; i < 8; i++)
  24. {
  25. if ((CRC8 & 0x01))
  26. {
  27. CRC8 >>= 1;
  28. CRC8 ^= poly;
  29. }
  30. else
  31. {
  32. CRC8 >>= 1;
  33. }
  34. }
  35. }
  36. }
  37. else
  38. {
  39. while (len--)
  40. {
  41. CRC8 ^= *Src++;
  42. for (i = 8; i > 0; --i)
  43. {
  44. if ((CRC8 & 0x80))
  45. {
  46. CRC8 <<= 1;
  47. CRC8 ^= poly;
  48. }
  49. else
  50. {
  51. CRC8 <<= 1;
  52. }
  53. }
  54. }
  55. }
  56. return CRC8;
  57. }
  58. /************************************************************************/
  59. /* CRC16 */
  60. /************************************************************************/
  61. uint16_t luat_crc16(const void *data, uint32_t len, uint16_t start, uint16_t poly, uint8_t is_reverse)
  62. {
  63. uint32_t i;
  64. uint16_t CRC16 = start;
  65. uint16_t wTemp = poly;
  66. uint8_t *Src = (uint8_t *)data;
  67. if (is_reverse)
  68. {
  69. poly = 0;
  70. for (i = 0; i < 16; i++)
  71. {
  72. if (wTemp & (1 << (15 - i)))
  73. {
  74. poly |= 1 << i;
  75. }
  76. }
  77. while (len--)
  78. {
  79. for (i = 0; i < 8; i++)
  80. {
  81. if ((CRC16 & 0x0001) != 0)
  82. {
  83. CRC16 >>= 1;
  84. CRC16 ^= poly;
  85. }
  86. else
  87. {
  88. CRC16 >>= 1;
  89. }
  90. if ((*Src&(1 << i)) != 0)
  91. {
  92. CRC16 ^= poly;
  93. }
  94. }
  95. Src++;
  96. }
  97. }
  98. else
  99. {
  100. while (len--)
  101. {
  102. for (i = 8; i > 0; i--)
  103. {
  104. if ((CRC16 & 0x8000) != 0)
  105. {
  106. CRC16 <<= 1;
  107. CRC16 ^= poly;
  108. }
  109. else
  110. {
  111. CRC16 <<= 1;
  112. }
  113. if ((*Src&(1 << (i - 1))) != 0)
  114. {
  115. CRC16 ^= poly;
  116. }
  117. }
  118. Src++;
  119. }
  120. }
  121. return CRC16;
  122. }
  123. static uint32_t *luat_crc32_table;
  124. static uint32_t luat_crc32_root;
  125. /**
  126. * @brief 反转数据
  127. * @param ref 需要反转的变量
  128. * @param ch 反转长度,多少位
  129. * @retval N反转后的数据
  130. */
  131. static unsigned long int prvReflect(unsigned long int ref, uint8_t ch)
  132. {
  133. unsigned long int value = 0;
  134. unsigned long int i;
  135. for (i = 1; i < (unsigned long int)(ch + 1); i++)
  136. {
  137. if (ref & 1)
  138. value |= (unsigned long int)1 << (ch - i);
  139. ref >>= 1;
  140. }
  141. return value;
  142. }
  143. /**
  144. * @brief 建立CRC32的查询表
  145. * @param Tab 表缓冲
  146. * @param Gen CRC32根
  147. * @retval None
  148. */
  149. static void prvCRC32_CreateTable(uint32_t *Tab, uint32_t Gen)
  150. {
  151. uint32_t crc;
  152. uint32_t i, j, temp, t1, t2, flag;
  153. // if (Tab[1] != 0)
  154. // return;
  155. for (i = 0; i < 256; i++)
  156. {
  157. temp = prvReflect(i, 8);
  158. Tab[i] = temp << 24;
  159. for (j = 0; j < 8; j++)
  160. {
  161. flag = Tab[i] & 0x80000000;
  162. t1 = Tab[i] << 1;
  163. if (0 == flag)
  164. {
  165. t2 = 0;
  166. }
  167. else
  168. {
  169. t2 = Gen;
  170. }
  171. Tab[i] = t1 ^ t2;
  172. }
  173. crc = Tab[i];
  174. Tab[i] = prvReflect(crc, 32);
  175. }
  176. }
  177. /**
  178. * @brief 计算buffer的crc校验码
  179. * @param CRC32_Table CRC32表
  180. * @param Buf 缓冲
  181. * @param Size 缓冲区长度
  182. * @param CRC32 初始CRC32值
  183. * @retval 计算后的CRC32
  184. */
  185. static uint32_t prvCRC32_Cal(uint32_t *CRC32_Table, const uint8_t *Buf, uint32_t Size, uint32_t CRC32Last)
  186. {
  187. uint32_t i;
  188. for (i = 0; i < Size; i++)
  189. {
  190. CRC32Last = CRC32_Table[(CRC32Last ^ Buf[i]) & 0xff] ^ (CRC32Last >> 8);
  191. }
  192. return CRC32Last;
  193. }
  194. uint32_t luat_crc32(const void *data, uint32_t len, uint32_t start, uint32_t poly)
  195. {
  196. if (!poly)
  197. {
  198. poly = 0x04C11DB7;
  199. }
  200. if (poly != luat_crc32_root)
  201. {
  202. luat_crc32_root = poly;
  203. if (!luat_crc32_table)
  204. {
  205. luat_crc32_table = luat_heap_malloc(1024);
  206. }
  207. prvCRC32_CreateTable(luat_crc32_table, luat_crc32_root);
  208. }
  209. return prvCRC32_Cal(luat_crc32_table, data, len, start);
  210. }
  211. // 仅追求数据的modbus crc16算法
  212. // from https://github.com/LacobusVentura/MODBUS-CRC16/blob/master/README.md
  213. // MIT协议
  214. #ifdef TYPE_EC718M
  215. #include "platform_def.h"
  216. #endif
  217. #ifndef __USER_FUNC_IN_RAM__
  218. #define __USER_FUNC_IN_RAM__
  219. #endif
  220. static uint16_t modbus_table[256] = {
  221. 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
  222. 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
  223. 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
  224. 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
  225. 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
  226. 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
  227. 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
  228. 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
  229. 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
  230. 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
  231. 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
  232. 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
  233. 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
  234. 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
  235. 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
  236. 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
  237. 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
  238. 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
  239. 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
  240. 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
  241. 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
  242. 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
  243. 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
  244. 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
  245. 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
  246. 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
  247. 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
  248. 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
  249. 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
  250. 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
  251. 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
  252. 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040 };
  253. __USER_FUNC_IN_RAM__ uint16_t luat_crc16_modbus( const uint8_t *buf, uint32_t len)
  254. {
  255. uint8_t xor = 0;
  256. uint16_t crc = 0xFFFF;
  257. while( len-- )
  258. {
  259. xor = (*buf++) ^ crc;
  260. crc >>= 8;
  261. crc ^= modbus_table[xor];
  262. }
  263. return crc;
  264. }